
CSCI 136
Data Structures &

Advanced Programming

Lecture 25
Fall 2019

Instructor: B&S



2

Last Time

• Binary search trees (Ch 14)
• The locate method
• Further Implementation
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Today’s Outline

• Tree balancing to maintain small height
• AVL Trees

• Partial taxonomy of balanced tree species
• Red-Black Trees

• Splay Trees
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Binary Search Tree Summary

Binary search trees store comparable values and 
support

• add(E value)

• contains(E value)
• get(E value)
• remove(E value)

All of which run in O(h) time (h = tree height)
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But What About Height?

• Can we design a binary search tree that is 
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"
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One of the first balanced binary tree structures

Definition:  A binary tree T is an AVL tree if

1. T is the empty tree, or

2. T has left and right sub-trees TL and TR such that

a) The heights of TL and TR differ by at most 1, and

b) TL and TR are AVL trees

AVL Trees
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AVL Trees
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• Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree. 

• A node with balance factor 1, 0, or -1 is considered 
balanced. 

• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 

• Alternate Definition: An AVL Tree is a binary tree in 
which every node is balanced.

AVL Trees
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AVL Trees have O(log n) Height
Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

• Show that an AVL tree of height h has at least fib(h) 
nodes (easy induction proof---try it!)

• Recall (HW): 𝑓𝑖𝑏 ℎ ≥ ( ⁄( ))+ if h ≥ 10

• So 𝑛 ≥ ( ⁄( ))+ and thus log ⁄0 1
𝑛 ≥ ℎ

• Recall that for any 𝑎, 𝑏 > 0, log6 𝑛 =
89:; <
89:; 6

• So log6 𝑛 and log= 𝑛 are Big-O of one another

• So h is O(log n)
We used Fibonacci numbers in a data structures proof!!!
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If adding to an AVL tree creates an unbalanced node A, 
we rebalance the subtree with root A

This involves a constant-time restructuring of part of 
the tree with root NA

The rebalancing steps are called tree rotations

Tree rotations preserve binary search tree structure

AVL Trees



13

Single Right Rotation

Assume A is unbalanced but its subtrees are AVL…
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Double Rotation I
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Double Rotation II
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AVL Tree Facts
• A tree that is AVL except at root, where root 

balance factor equals ±2 can be rebalanced 
with at most 2 rotations

• add(v) requires at most O(log n) balance 
factor changes and one (single or double) 
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance 
factor changes and (single or double) rotations 
to restore AVL structure

• An AVL tree on n nodes has height O(log n)
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AVL Trees: One of Many

There are many strategies for tree balancing to 
preserve O(log n) height, including
• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves 

have the same number of black nodes
• This is called the black height of the node
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice 
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes 
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children
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Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has 
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 2+I , so log) 𝑛 + 1 ≥ ℎJ ≥ +
)

• Thus 2 log) 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)
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Red-Black Tree Insertion
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Red-Black Tree Insertion



26

Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove, 
contains, get) on an n-node splay tree take at 
most O(m log n) time.
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Splay Tree Rotations
Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)
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Splay Tree Iterator
• Even contains method changes splay tree shape
• This breaks the standard in-order iterator!

• Because the stack is based on the shape of the tree

• Solution: Remove the stack from the iterator
• Observation: Given location of current node (node 

whose value is next to be returned), we can compute 
it’s (in-order)successor in next()
• It’s either left-most leaf of right child of current, or

• It’s closest ”left-ancestor” of current
• Ancestor whose left child is also an ancestor of current

• Also, reset must “re-find” root
• Idea: Hold a single “reference” node, use it to find root


