CSCI 136 Data Structures & Advanced Programming

> Lecture 25 Fall 2019 Instructor: B&S

Last Time

- Binary search trees (Ch 14)
 - The *locate* method
 - Further Implementation

Today's Outline

- Tree balancing to maintain small height
 - AVL Trees
- Partial taxonomy of balanced tree species
 - Red-Black Trees
 - Splay Trees

Binary Search Tree Summary

Binary search trees store comparable values and support

- add(E value)
- contains(E value)
- get(E value)
- remove(E value)

All of which run in O(h) time (h = tree height)

But What About Height?

- Can we design a binary search tree that is always "shallow"?
- Yes! In many ways. Here's one
- AVL trees
 - Named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published a paper about AVL trees in 1962 called "An algorithm for the organization of information"

AVL Trees

One of the first balanced binary tree structures

Definition: A binary tree T is an AVL tree if

- I. T is the empty tree, or
- 2. T has left and right sub-trees T_L and T_R such that
 - a) The heights of T_L and T_R differ by at most I, and
 - b) T_L and T_R are AVL trees

AVL Trees

- Balance Factor of a binary tree node:
 - height of right subtree minus height of left subtree.
 - A node with balance factor 1, 0, or -1 is considered balanced.
 - A node with any other balance factor is considered unbalanced and requires rebalancing the tree.
- Alternate Definition: An AVL Tree is a binary tree in which every node is balanced.

AVL Trees have O(log n) Height

Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

- Show that an AVL tree of height h has at least fib(h) nodes (easy induction proof---try it!)
- Recall (HW): $fib(h) \ge (3/2)^h$ if $h \ge 10$
- So $n \ge (3/2)^h$ and thus $\log_{3/2} n \ge h$
 - Recall that for any a, b > 0, $\log_a n = \frac{\log_b n}{\log_b a}$
 - So $\log_a n$ and $\log_b n$ are Big-O of one another
- So h is O(log n)

We used Fibonacci numbers in a data structures proof!!!

AVL Trees

If adding to an AVL tree creates an unbalanced node A, we rebalance the subtree with root A

This involves a constant-time restructuring of part of the tree with root NA

The rebalancing steps are called *tree rotations*

Tree rotations preserve binary search tree structure

Single Right Rotation

Assume A is unbalanced but its subtrees are AVL...

height k + 3

height k + 2

Double Rotation I

height k + 3

height k + 2

height k + 3

AVL Tree Facts

- A tree that is AVL except at root, where root balance factor equals ±2 can be rebalanced with at most 2 rotations
- add(v) requires at most O(log n) balance factor changes and one (single or double) rotation to restore AVL structure
- remove(v) requires at most O(log n) balance factor changes and (single or double) rotations to restore AVL structure
- An AVL tree on n nodes has height O(log n)

AVL Trees: One of Many

There are many strategies for tree balancing to preserve O(log n) height, including

- AVL Trees: guaranteed O(log n) height
- Red-black trees: guaranteed O(log n) height
- B-trees (not binary): guaranteed O(log n) height
 - 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
- Splay trees: Amortized O(log n) time operations
- Randomized trees: O(log n) expected height

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness

- Each node is colored red or black
- Coloring satisfies these rules
 - All empty trees are black
 - We consider them to be the leaves of the tree
 - Children of red nodes are black
 - All paths from a given node to it's descendent leaves have the same number of black nodes
 - This is called the *black height* of the node

Red-Black Trees

- The coloring rules lead to the following result
- Proposition: No leaf has depth more than twice that of any other leaf.
- This in turn can be used to show
- Theorem: A Red-Black tree with n internal nodes has height satisfying $h \le 2\log(n+1)$
 - Note: The tree will have exactly n+1 (empty) leaves
 - since each internal node has two children

Red-Black Trees

- Theorem: A Red-Black tree with n internal nodes has height satisfying $h \le 2\log(n+1)$
- Proof sketch: Note: we count empty tree nodes!
- If root is red, recolor it black.
- Now merge red children into (black) parents
 - Now n' \leq n nodes and height h' \geq h/2
- New tree has all children with degree 2, 3, or 4
 - All leaves have depth exactly h' and there are n+1 leaves

• So
$$n + 1 \ge 2^{h'}$$
, so $\log_2(n + 1) \ge h' \ge \frac{h}{2}$

• Thus $2 \log_2(n+1) \ge h$

Corollary: R-B trees with n nodes have height O(log n)

Black empty leaves not drawn. 7 just added Black-height still 2.

Black height still 2, color violation moved up

Right rotation at 20, black height broken, need to recolor

Color conditions restored, black-height restored.

Splay Trees

Splay trees are self-adjusting binary trees

- Each time a node is accessed, it is moved to root position via rotations
- No guarantee of balance (or shallow height)
- But good *amortized* performance

Theorem: Any set of m operations (add, remove, contains, get) on an n-node splay tree take at most O(m log n) time.

Splay Tree Rotations

Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

Splay Tree Iterator

- Even contains method changes splay tree shape
- This breaks the standard in-order iterator!
 - Because the stack is based on the shape of the tree
- Solution: Remove the stack from the iterator
- Observation: Given location of current node (node whose value is next to be returned), we can compute it's (in-order)successor in *next()*
 - It's either left-most leaf of right child of current, or
 - It's closest "left-ancestor" of current
 - Ancestor whose left child is also an ancestor of current
- Also, reset must "re-find" root
 - Idea: Hold a single "reference" node, use it to find root