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Administrative Details

• Lab 8 today!
• You can work with a partner
• Bring a design to lab
• Try to take advantage of
• Abstract base classes/inheritance

• Data structures you’ve learned

• We want you to keep track of both total time 
to complete, and average customer wait time
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Today

• Heapsort
• Introduction to Binary Search Trees (BSTs)
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Full vs. Complete (non-standard!)

• Full tree – A full binary 
tree of height h has 
leaves only on level h, 
and each internal node 
has exactly 2 children.

• Complete tree – A 
complete binary tree of 
height h is full to height h-1 
and has all leaves at level h 
in leftmost locations.

All full trees are complete, but not all complete trees are full! 
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HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse 

ordering: that is: highest rank/lowest priority 
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector 
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]
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Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Decent (i.e. average) performance on mostly 
sorted data, unlike quicksort

• Good for incremental sorting
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Tree Summary

• Trees
• Express hierarchical relationships
• Tree structure captures relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority

• Node invariants: parent has higher priority than 
each child

• Provides efficient PriorityQueue implementation
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Improving on OrderedVector

• The OrderedVector class provides O(log n) 
time searching for a group of n comparable 
objects
• add() and remove(), though, take O(n) time in the 

worst case---and on average!

• Can we improve on those running times 
without sacrificing the O(log n) search time?

• Let’s find out....
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Binary Trees and Orders

• Binary trees impose multiple orderings on 
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a 
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are at most v

• All values in right subtree of v are at least v

• This leads us to...
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Binary Search Trees

• Binary search trees maintain a total ordering 
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs
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BST Observations

• The same data can be represented by many 
BST shapes

• Searching for a value in a BST takes time 
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at 
least one child (a constraint!)

• Removing from a BST can involve any node
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BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)

• Runtime of above operations?
• All O(h) – where h is the tree height

• iterator()
• This will provide an in-order traversal
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BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST

• Comparator<E> ordering: for comparing nodes
• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• Other creates a NaturalComparatot
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BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree with 

root n such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child 

v should be

• How would we implement locate()?
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BST Implementation: locate

BinaryTree locate(BinaryTree root, E val)
if root’s value equals val return root

child ç child of root whose subtree should
hold val

if child is emptry tree, return root
// val not in subtree based at root

else //keep looking
return locate(child, val)
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BST Implementation: locate

• What about this line?
child ç child of root whose subtree should hold value

• If the tree can have multiple nodes with 
same value, then we need to be careful

• Convention: During add operation, only 
move to right subtree if value to be added is 
greater than value at node

• We’ll look at add later
• Let’s look at locate now....
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The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}
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Other core BST methods

• locate(v) returns either a node containing v or a 
node where v can be added as a child

• locate() is used by 
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...
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Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}
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First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++; 

}

Problem: If repeated values are allowed, left subtree might 
not be empty when setLeft is called
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Add: Repeated Nodes
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Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Predecessor: item stored immeditately “before” 

value in true
• Add repeated node as right child of predecessor

• If insertLocation has a left subtree that’s where 
Predecessor will be
• Rightmost item in the left subtree



24

Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else 
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;
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How to Find Predecessor
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Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}
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Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any 

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)
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Case 1: No left binary tree

x

x.right x.right
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Case 2: No right binary tree
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Case 3: Left has no right subtree
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Case 4: General Case

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest 
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s 
left subtree!
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Case 4: General Case
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Case 4: General Case

Replace root with predecessor(root),
then patch up the remaining tree
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RemoveTop(topNode) 

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one

If left has no right child
make right the right child of left then return left

Otherwise find largest node C  in left
// C is the right child of its own parent P 

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees
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But What About Height?

• Can we design a binary search tree that is 
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"
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Single Right Rotation
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AVL Tree Facts

• A tree that is AVL except at root, where root 
balance factor equals ±2 can be rebalanced 
with at most 2 rotations

• add(v) requires at most O(log n) balance 
factor changes and one (single or double) 
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance 
factor changes and (single or double) rotations 
to restore AVL structure
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AVL Trees: One of Many

• There are many strategies for tree balancing to 
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height


