
CSCI 136
Data Structures &

Advanced Programming

Lecture 24
Fall 2019

Instructor: Bill & Sam

2

Administrative Details

• Lab 8 today!
• You can work with a partner
• Bring a design to lab
• Try to take advantage of
• Abstract base classes/inheritance

• Data structures you’ve learned

• We want you to keep track of both total time
to complete, and average customer wait time

3

Today

• Heapsort
• Introduction to Binary Search Trees (BSTs)

4

Full vs. Complete (non-standard!)

• Full tree – A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.

• Complete tree – A
complete binary tree of
height h is full to height h-1
and has all leaves at level h
in leftmost locations.

All full trees are complete, but not all complete trees are full!

5

HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]

6

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

7

Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Decent (i.e. average) performance on mostly
sorted data, unlike quicksort

• Good for incremental sorting

8

Tree Summary

• Trees
• Express hierarchical relationships
• Tree structure captures relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority

• Node invariants: parent has higher priority than
each child

• Provides efficient PriorityQueue implementation

9

Improving on OrderedVector

• The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects
• add() and remove(), though, take O(n) time in the

worst case---and on average!

• Can we improve on those running times
without sacrificing the O(log n) search time?

• Let’s find out....

10

Binary Trees and Orders

• Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are at most v

• All values in right subtree of v are at least v

• This leads us to...

11

Binary Search Trees

• Binary search trees maintain a total ordering
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

12

BST Observations

• The same data can be represented by many
BST shapes

• Searching for a value in a BST takes time
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at
least one child (a constraint!)

• Removing from a BST can involve any node

13

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)

• Runtime of above operations?
• All O(h) – where h is the tree height

• iterator()
• This will provide an in-order traversal

14

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST

• Comparator<E> ordering: for comparing nodes
• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• Other creates a NaturalComparatot

15

BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree with

root n such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child

v should be

• How would we implement locate()?

16

BST Implementation: locate

BinaryTree locate(BinaryTree root, E val)
if root’s value equals val return root

child ç child of root whose subtree should
hold val

if child is emptry tree, return root
// val not in subtree based at root

else //keep looking
return locate(child, val)

17

BST Implementation: locate

• What about this line?
child ç child of root whose subtree should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful

• Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

• We’ll look at add later
• Let’s look at locate now....

18

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}

19

Other core BST methods

• locate(v) returns either a node containing v or a
node where v can be added as a child

• locate() is used by
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

20

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

21

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++;

}

Problem: If repeated values are allowed, left subtree might
not be empty when setLeft is called

22

Add: Repeated Nodes

23

Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Predecessor: item stored immeditately “before”

value in true
• Add repeated node as right child of predecessor

• If insertLocation has a left subtree that’s where
Predecessor will be
• Rightmost item in the left subtree

24

Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;

25

How to Find Predecessor

26

Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}

27

Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)

28

Case 1: No left binary tree

x

x.right x.right

29

Case 2: No right binary tree

x

x.left x.left

30

Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B

31

Case 4: General Case

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s
left subtree!

32

Case 4: General Case

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B

33

Case 4: General Case

Replace root with predecessor(root),
then patch up the remaining tree

1
2

A

x

4

D

B

C

3

1
2

A

3

4

D

B C

34

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one

If left has no right child
make right the right child of left then return left

Otherwise find largest node C in left
// C is the right child of its own parent P

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees

35

But What About Height?

• Can we design a binary search tree that is
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

36

A

B

C

+2

+1

0

• The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node
with balance factor 1, 0, or -1 is considered balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

37

A

B

C

+2

+1

0
A

B

C

0

00

Single Rotation

Unbalanced trees can be rotated to achieve balance.

38

Single Right Rotation

39

B

E

F

-2

01

A D
-10

C 0

D

E

F

-2

0-2

B
0

A 0 C
0

B

D

E

0

+10

A
0

F
0

C
0

Double Rotation

40

AVL Tree Facts

• A tree that is AVL except at root, where root
balance factor equals ±2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and (single or double) rotations
to restore AVL structure

41

AVL Trees: One of Many

• There are many strategies for tree balancing to
preserve O(log n) height, including

• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height

