CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Fall 2019
Instructor: B&S



Administrative Details

Lab 8 today!
You can work with a partner
Bring a design to lab

Try to take advantage of
e Abstract base classes/inheritance

e Data structures you've learned



Last Time

* Heapsort
e Skew Heaps: A Mergeable Heap Structure
* Introduction to Binary Search Trees (BSTs)



Today s Outline

* Binary search trees (Ch 14)
* Overview
e Definition
* Some Applications
* The locate method

* Further Implementation



Binary Search Trees

* Binary search trees maintain a total ordering
among elements (assumes comparability)

e Definition: A BST T is either:
* Empty
* Has root r with subtrees T, and Ty such that

* All nodes in T| have smaller value than r
e All nodes in Ty have larger value than r

e T, and Ty are also BSTs



BST Observations

The same data can be represented by many
BST shapes

Searching for a value in a BST takes time
proportional to the height of the tree

* Reminder: trees have height, nodes have depth

Additions to a BST happen at nodes missing at
least one child (a constraint!)

Removing from a BST can involve any node



BST Operations

e BSTs will implement the OrderedStructure Interface
* add(E item)
e contains(E item)
e get(E item)
e remove(E item)

e Runtime of above operations!?

e All O(h) — where h is the tree height
e iterator()

e This will provide an in-order traversal



BST Implementation

 The BST holds the following items
* BinaryTree root: the root of the tree

* BinaryTree EMPTY: a static empty BinaryTree

* To use for all empty nodes of tree
* int count: the number of nodes in the BST
e Comparator<E> ordering: for comparing nodes
* Note: E must implement Comparable
* Two constructors: One takes a Comparator

e Other creates a NaturalComparatot



BST Implementation: locate

Several methods search the tree

* add, remove, contains
We factor out common code: locate method

protected locate(BinaryTree<E> node, E v)
 Returns a BinaryTree<E> n in the subtree with
root node such that either

* n has its value equal to v, or

e vis notin this subtree and n is the node whose child
v should be

How would we implement locate()?



BST Implementation: locate

Binary Tree locate(BinaryTree root, £'val)

if root s value equals val return root

child € child of root whose subtree should

hold val
if child is empiry tree, return root

// val not in subtree based at root
else //keep looking
return locate(child, val)



BST Implementation: locate

What about this line?
child € child of root whose subtree should hold

value

If the tree can have multiple nodes with
same value, then we need to be careful

Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

We'll look at add later

| af’c laanl A+ lInFate nAaw



The code : locate

protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)
child = root.right();
else
child

root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else
return locate(child, value);



Other core BST methods

locate(v) returns either a node containing v or a
node where v can be added as a child

locate() is used by

e public boolean contains(E value)
e public E get(E value)

e public void add(E value)

e Public void remove(E value)

Some of these also use another utility method

e protected BT predecessor (BT root)

Let’s look at contains() first...



Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());



First (Bad) Attempt: add(E value)

public void add(E value) {
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {
BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight (newNode) ;
else
insertLocation.setLeft (newNode);

}

count++;

Problem: If repeated values are allowed, left subtree might
not be empty when setlLeft is called



Add: Repeated Nodes

Where would a new K be added?
A new V?




Add Duplicate to Predecessor

* If insertLocation has a left child then
* Find insertLocation’s predecessor
e Add repeated node as right child of predecessor

* |If insertLocation has a left subtree that’s where
Predecessor will be
* Do you believe me!
* Where else could it be?



Corrected Version: add(E value)

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {
BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight (newNode) ;
else
if (insertLocation.left().isEmpty())
insertLocation.setLeft (newNode);
else
// if value is in tree, we insert just before
predecessor(insertLocation) .setRight (newNode);

}

count++;



How to Find Predecessor

Where would a new K be added?
A new V?




Predecessor

protected BinaryTree<E> predecessor (BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), "Root has predecessor");
Assert.pre(!root.left().isEmpty(), "Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;

20



Removal

* Removing the root is a (not so) special case

* Let’s figure that out first

* |f we can remove the root, we can remove any
element in a BST in the same way

* Do you believe me!

* We need to implement:

e public E remove(E item)
* protected BT removeTop (BT top)

21



Case |: No left binary tree

X.right X.right

22



Case 2: No right binary tree

23



Case 3: Left has no right subtree

X.right

24



Case 4: General Case

e Consider BST requirements:
* |eft subtree must be <= root
* Right subtree must be > root
e Strategy: replace the root with the largest
value that is less than or equal to it
* predecessor(root) : rightmost left descendant

* This may require reattaching the predecessor’s
left subtree!

25



Case 4: General Case

return >

Replace root with predecessor(root),
then patch up the remaining tree

26



Case 4: General Case

Replace root with predecessor(root),
then patch up the remaining tree

27



RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. top/Node)
If etther left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C in left

/7 Cis the right child of its own parent P

/7 Cis the predecessor of right (ignoring top/Node)

Detach Cfrom P: make C's left child the right child of P
Make C new root with left and right as its sub-trees

28



But What About Height!?

e Can we design a binary search tree that is
always “shallow™?

* Yes! In many ways. Here’s one
* AVL trees

* Named after its two inventors, G.M. Adelson-
Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information”

29



* The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node

with balance factor |, 0, or -1 is considered balanced.

* A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

30



Single Rotation

Unbalanced trees can be rotated to achieve balance.

31



Single Right Rotation

height k-2 height k-1

height k

i height k-2
eight k+1 height k ¢ height k-1

32






AVL Tree Facts

* A tree that is AVL except at root, where root

balance factor equals *=2 can be rebalanced
with at most 2 rotations

* add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

* remove(v) requires at most O(log n) balance

factor changes and (single or double) rotations
to restore AVL structure

34



AVL Trees: One of Many

There are many strategies for tree balancing to
preserve O(log n) height, including

AVL Trees: guaranteed O(log n) height
Red-black trees: guaranteed O(log n) height

B-trees (not binary): guaranteed O(log n) height
e 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

Splay trees: Amortized O(log n) time operations
Randomized trees: O(log n) expected height

35



