
CSCI 136
Data Structures &

Advanced Programming

Lecture 23
Fall 2019

Instructor: Bill & Sam

Administrative Details

• Lab 8: Simulations
• You will simulate two queuing strategies
• You can work with a partner

• Time spent on lab before Wed. is time well-spent!

• Problem Set 3 is online
• Due this Friday at beginning of class

2

Last Time

• Improving Huffman’s Algorithm
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

3

Today

• Finishing up with heaps
• HeapSort
• Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
• Definitions
• Implementation

4

Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT

(ArrayTree)
• But use extensible Vector instead of array (makes

adding elements easier)
• Note:

• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2

Heap

3 7 5 11 17 14 30 21 35 24 19 22
0 1 2 3 4 5 6 7 8 9 10 11

Stored as
Vector:

Stored as
Tree:

Implementing Heaps

• Features
• No gaps in array (array is complete)-- why?

• We always add in next available array slot (left-most available spot
in binary tree;

• We always remove using “final” leaf

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount
of work to “re-heapify”
• How small? Note: finding a node’s child or parent takes constant

time, as does finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the

tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap

• How?

Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1

• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1

• Then V[k-1..n] satisfies heap property

Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1

• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1

• Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

!
"#$

%
𝑑2" = ℎ − 1 2%,- + 2 = log 𝑛 − 1 2𝑛 + 2

• This is O(n log n)
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
might have to move to root: O(log n) swaps
per element

• Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

!
"#$

%
(ℎ − 𝑑)2" = 2%,- − ℎ − 2 = 2𝑛 − log 𝑛 + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!!

Some Sums

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠1

!
"#$

"#5
𝑑 ∗ 2" = 𝑘 − 1 ∗ 25,- + 2

!
"#$

"#5
𝑘 − 𝑑 ∗ 2" = 25,- − 𝑘 − 2

!
"#$

"#5
2" = 25,- − 1

!
"#$

"#5
𝑟" = ⁄(𝑟5,-−1) (𝑟 − 1)

HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Decent performance on mostly sorted data,
unlike quicksort

• Good for incremental sorting

More on Heaps

• Set-up: We want to build a large heap. We
have several processors available.

• We’d like to use them to build smaller heaps
and then merge them together

• Suppose we can share the array holding the
elements among the processors.
• How long to merge two heaps?

• How complicated is it?

• What if we use BinaryTrees for our heaps?

Mergeable Heaps

• We now want to support the additional
operation merge(heap1, heap2)

• Basic idea: heap with larger root somehow
points into heap with smaller root

• Challenges
• Points how? Where?
• How much reheapifying is needed

• How deep do trees get after many merges?

Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps

tree shallow over time
• Theorem: Any set of m SkewHeap operations

can be performed in O(m log n) time, where n
is the total number of items in the SkewHeaps

• Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T (S now has minValue)
if S has no left subtree, T becomes left subtree
else

let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S

return S

Tree Summary

• Trees
• Express hierarchical relationships
• Tree structure captures relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority

• Node invariants: parent has higher priority than
each child

• Provides efficient PriorityQueue implementation

Improving on OrderedVector

• The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects
• add() and remove(), though, take O(n) time in the

worst case---and on average!

• Can we improve on those running times
without sacrificing the O(log n) search time?

• Let’s find out....

Binary Trees and Orders

• Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are at most v

• All values in right subtree of v are at least v

• This leads us to...

Binary Search Trees

• Binary search trees maintain a total ordering
among elements

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

• Examples

BST Observations

• The same data can be represented by many
BST shapes

• Searching for a value in a BST takes time
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at
least one child (a constraint!)

• Removing from a BST can involve any node

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• iterator()

• This will provide an in-order traversal

• Runtime of add, contains, get, remove: O(height)
• Goal: Keep the height to O(log n)

• Duane’s BinarySearchTree class doesn’t achieve this…

• But his RedBlackSearchTree does!

Application: Dictionary

• Create a BST of ComparableAssociations
• Order BST by key
• Two objects are equal if keys are equal

• Example: Symbol tables (PostScript lab) are
Dictionaries
• But would only use a BST if the set of possible

symbols was very large

• What lab used a large dictionary?

Application: Tree Sort

• Can we sort data using a BST?
• Yes!

• Runtime?
• To build a tree with n elements, we do n

insertions: O(n*h), where h is the maximum
height attained by the tree

• In order traversal: O(n)
• Total runtime: O(n*h)

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• The other creates a NaturalComparator

BST Implementation: locate

• Several methods search the tree: add,
remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> b, E v)
• Returns a BinaryTree<E> in the subtree with

root node such that either
• node has its value equal to v, or
• v is not in this subtree and node is where v would be

added as a (left or right) child

• How would we implement locate()?

BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value return root
child ç child of root that should hold value
if child is empty tree, return root

// value not in subtree based at root
else //keep looking

return locate(child, value)

BST Implementation: locate

• What about this line?
child ç child of root that should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful

• Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

• We’ll look at add later
• Let’s look at locate now....

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}

Other core BST methods

• locate(v) returns either a node containing v or a
node where v can be added as a child

• locate() is used by
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++;

}

Problem: If repeated values are allowed, left subtree might
not be empty when setLeft is called

Add: Repeated Nodes

Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Add repeated node as right child of predecessor

• Predecessor will be in insertLocation’s left sub-tree
• Do you believe me?

Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;

How to Find Predecessor

Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}

Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)

Case 1: No left binary tree

x

x.right x.right

Case 2: No right binary tree

x

x.left x.left

Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B

Case 4: General Case (HARD!)

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s
left subtree!

Case 4: General Case (HARD!)

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B

Case 4: General Case (HARD!)

Replace root with predecessor(root),
then patch up the remaining tree

1
2

A

x

4

D

B

C

3

1
2

A

3

4

D

B C

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other
If left has no right child

make right the right child of left then return left
Otherwise find largest node C in left

// C is the right child of its own parent P

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees

But What About Height?

• Can we design a binary search tree that is
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

