
CSCI 136
Data Structures &

Advanced Programming

Lecture 23
Fall 2019

Instructor: B&S



Administrative Details

• Lab 8: Simulations
• You will simulate two queuing strategies
• You can work with a partner

• Time spent on lab before Wed. is time well-spent!

• Problem Set 3 is online
• Due this Friday at beginning of class

2



Last Time

Improving Huffman’s Algorithm
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations

3



Today

• Finishing up with heaps
• HeapSort
• Alternative Heap Structures

• Binary Search Tree: A New Ordered Structure
• Definitions
• Implementation

4



HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse 

ordering: that is: highest rank/lowest priority 
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector 
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]



0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort



Why Heapsort?

• Heapsort is slower than Quicksort in general
• Any benefits to heapsort?
• Guaranteed O(n log n) runtime

• Works well on mostly sorted data, unlike 
quicksort

• Good for incremental sorting



More on Heaps

• Set-up: We want to build a large heap. We 
have several processors available.

• We’d like to use them to build smaller heaps 
and then merge them together

• Suppose we can share the array holding the 
elements among the processors.
• How long to merge two heaps?

• How complicated is it?

• What if we use BinaryTrees for our heaps?



Mergeable Heaps

• We now want to support the additional 
destructive operation merge(heap1, heap2)

• Basic idea: heap with larger root somehow 
points into heap with smaller root

• Challenges
• Points how? Where?
• How much reheapifying is needed

• How deep do trees get after many merges?



Skew Heap

• Don’t force heaps to be complete BTs?
• Develop recursive merge algorithm that keeps 

tree shallow over time
• Theorem: Beginning with an empty SkewHeap, 

any set of m SkewHeap operations can be 
performed in O(m log n) time, where n is the 
total number of items in the SkewHeaps
• So the amortized run-time of each operation is 

O(log n) !

• Let’s sketch out merge operation....



Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue

swap S and T (S now has minValue)
if S has no left subtree, T becomes its left subtree
else

let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S

return S



Skew Heaps

How would you implement add and remove?



Tree Summary

• Trees
• Express hierarchical relationships
• Tree structure captures relationship

• i.e., ancestry, game boards, decisions, etc.

• Heap
• Partially ordered tree based on item priority

• Node invariants: parent has higher priority than 
each child

• Provides efficient PriorityQueue implementation



Improving on OrderedVector

• The OrderedVector class provides O(log n) 
time searching for a group of n comparable 
objects
• add() and remove(), though, take O(n) time in the 

worst case---and on average!

• Can we improve on those running times 
without sacrificing the O(log n) search time?

• Let’s find out....



Binary Trees and Orders

• Binary trees impose multiple orderings on 
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a 
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are ≤ v

• All values in right subtree of v are ≥ v

• This leads us to...



Binary Search Trees

• Binary search trees maintain a total ordering 
among elements

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

• Examples….



BST Observations

• The same data can be represented by many 
BST shapes

• Searching for a value in a BST takes time 
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at 
least one child (a constraint!)

• Removing from a BST can involve any node



BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• iterator()

• This will provide an in-order traversal

• Runtime of add, contains, get, remove: O(height)
• Goal: Keep the height to O(log n)

• Duane’s BinarySearchTree class doesn’t achieve this…

• But his RedBlackSearchTree does!



Application: Dictionary

• Create a BST of ComparableAssociations
• Order BST by key
• Two objects are equal if keys are equal

• Example: Symbol tables (PostScript lab) are 
Dictionaries
• But would only use a BST if the set of possible 

symbols was very large



Application: Tree Sort

• Can we sort data using a BST?
• Yes!

• Runtime?
• To build a tree with n elements, we do n 

insertions: O(n*h), where h is the maximum 
height attained by the tree

• In order traversal: O(n)
• Total runtime: O(n*h)



BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• The other creates a NaturalComparator



BST Implementation: locate

• Several methods search the tree: add, 
remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree with 

root node such that either
• node has its value equal to v, or
• v is not in this subtree and node is where v would be 

added as a (left or right) child

• How would we implement locate()?



BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value return root
child ç child of root that should hold value
if child is emptry tree, return root

// value not in subtree based at root
else //keep looking

return locate(child, value)


