CSCI 136
Data Structures &
Advanced Programming

Lecture 23
Fall 2019
Instructor: B&S

Administrative Details

e Lab 8: Simulations
* You will simulate two queuing strategies
* You can work with a partner

* Time spent on lab before Wed. is time well-spent!

* Problem Set 3 is online
* Due this Friday at beginning of class

Last Time

Improving Huffman’s Algorithm
* Priority Queues & Heaps

e A “somewhat-ordered” data structure

e Conceptual structure
e Efficient implementations

Today

* Finishing up with heaps
e HeapSort
e Alternative Heap Structures
e Binary Search Tree: A New Ordered Structure
 Definitions
* Implementation

HeapSort

Heaps yield another O(n log n) sort method

To HeapSort a Vector “in place”

e Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Now repeatedly remove elements to fill in Vector
from tail to head
e For(inti=v.size() — |;i>0;i--)
— RemoveMin from v[O0..i] // v[i] is now not in heap

— Put removed value in location v[i]

Heap Sort vs QuickSort

~
[0}
3
Nt
)
E
=

~O— Heap Sort
—l— Quick Sort

200000 400000 600000 800000 1000000 1200000
Size

Why Heapsort!?

Heapsort is slower than Quicksort in general

Any benefits to heapsort!?

e Guaranteed O(n log n) runtime

Works well on mostly sorted data, unlike
quicksort

Good for incremental sorting

More on Heaps

Set-up: We want to build a large heap. We
have several processors available.

We'd like to use them to build smaller heaps
and then merge them together

Suppose we can share the array holding the
elements among the processors.

How long to merge two heaps!

How complicated is it!

\'A%

nat if we use BinaryTrees for our heaps!?

Mergeable Heaps

* We now want to support the additional
destructive operation merge(heap|, heap?2)

* Basic idea: heap with larger root somehow
points into heap with smaller root

e Challenges
e Points how! Where!
* How much reheapifying is needed

 How deep do trees get after many merges!?

Skew Heap

Don’t force heaps to be complete BTs?

Develop recursive merge algorithm that keeps
tree shallow over time

Theorem: Beginning with an empty SkewHeap,
any set of m SkewHeap operations can be
performed in O(m log n) time, where n is the
total number of items in the SkewHeaps

e So the amortized run-time of each operation is
O(log n) !

Let’s sketch out merge operation....

Skew Heap: Merge Pseudocode

Skewteap merge(SkewHeap S, SkewHeap T)
if either S or 1'is empry, return the other
if 1.munValue <S.minValue
swap Sand T (S now has minValue)
if'S has no left subtree, T'becomes its left subtree
else
let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, 1) becomes left subtree of S

return S

Skew Heaps

How would you implement add and remove!

Tree Summary

* Trees
* Express hierarchical relationships

* Tree structure captures relationship

* i.e., ancestry, game boards, decisions, etc.
* Heap
 Partially ordered tree based on item priority

* Node invariants: parent has higher priority than
each child

* Provides efficient PriorityQueue implementation

Improving on OrderedVector

* The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects

e add() and remove(), though, take O(n) time in the
worst case---and on average!

e Can we improve on those running times
without sacrificing the O(log n) search time!?

e Let’s find out....

Binary Trees and Orders

e Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

* |n particular, in-order traversal suggests a
natural way to hold comparable items

e For each node v in tree
e All values in left subtree of vare <v

* All values in right subtree of vare = v

e This leads us to...

Binary Search Trees

* Binary search trees maintain a total ordering
among elements

e Definition: A BST T is either:
* Empty
* Has root r with subtrees T, and Ty such that

* All nodes in T| have smaller value than r
e All nodes in Ty have larger value than r

e T, and Ty are also BSTs
* Examples....

BST Observations

The same data can be represented by many
BST shapes

Searching for a value in a BST takes time
proportional to the height of the tree

* Reminder: trees have height, nodes have depth

Additions to a BST happen at nodes missing at
least one child (a constraint!)

Removing from a BST can involve any node

BST Operations

e BSTs will implement the OrderedStructure Interface

add(E item)
contains(E item)
get(E item)
remove (E 1tem)
iterator()

* This will provide an in-order traversal

e Runtime of add, contains, get, remove: O(height)
e Goal: Keep the height to O(log n)

e Duane’s BinarySearchTree class doesn’t achieve this...
e But his RedBlackSearchTree does!

Application: Dictionary

* Create a BST of ComparableAssociations
* Order BST by key

* Two objects are equal if keys are equal

e Example: Symbol tables (PostScript lab) are
Dictionaries

* But would only use a BST if the set of possible
symbols was very large

Application: Tree Sort

e Can we sort data using a BST?
* Yes!

e Runtime?

* To build a tree with n elements, we do n
insertions: O(n*h), where h is the maximum
height attained by the tree

* |n order traversal: O(n)
e Total runtime: O(n*h)

BST Implementation

 The BST holds the following items
* BinaryTree root: the root of the tree

* BinaryTree EMPTY: a static empty BinaryTree

* To use for all empty nodes of tree
* int count: the number of nodes in the BST
e Comparator<E> ordering: for comparing nodes
* Note: E must implement Comparable
* Two constructors: One takes a Comparator

* The other creates a NaturalComparator

BST Implementation: locate

Several methods search the tree: add,
remove, contains

We factor out common code: locate method

protected locate(BinaryTree<E> node, E v)
* Returns a BinaryTree<E> in the subtree with
root node such that either

* node has its value equal to v, or

e vis not in this subtree and node is where v would be
added as a (left or right) child

How would we implement locate()?

BST Implementation: locate

Binary Tree locate(Binaryree root, F'value)
if root s value equals value return root
child € child of root that should hold value
if child is empiry tree, return root
// value not in subtree based at root
else //keep looking

return locate(child, value)

