CSCI 136
Data Structures &
Advanced Programming

Lecture 22
Fall 2019

Instructor: Bill & Sam

Administration

e PS3 out
e Lab 5 back

Application: Huffman Codes
(a CS 256 Preview)

e Computers encode a text as a sequence of bits

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 INULL] 32 20 [SPACE] | 64 40 @ 96 60 .
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 a4 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2c 76 4C L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A z 122 Az
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50 1] 125 D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

Huffman Codes

Goal: Encode a text as a sequence of bits

Sometimes, use ASCII: | character = 8 bits (| byte)
 Allows for 28 = 256 different characters

‘A’ =01000001, ‘B" =01000010

Space to store “AN_ANTARCTIC_PENGUIN”
e 20 characters -> 20*8 bits = 160 bits

Is there a better way!?
 Only Il symbols are used (ANTRCIPEGU)

* Only need 4 bits per symbol (since 2*>11)!
e 20*4 = 80 bits instead of 160!

e Can we still do better??

Huffman Codes

 Example

e AN_ANTARCTIC_PENGUIN
e Compute letter frequencies

e Key ldea: Use fewer bits for most common letters

3 2 I I 2 4 I I 2 I 2
110 111 10l 1000 000 0OOI 1001 1010 OIOI OlIOCO Oll

e Uses 67 bits to encode entire string

The Encoding Tree

N:4

u:1l

A:3

C:2

0 1
=2 O O
1 0 1 0 1
T2 Gi| |p1| |rR1| |E1

Left = 0; Right = 1

Features of Good Encoding

* Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

* No node has exactly one child

* Nodes with lower frequency have greater
depth

Huffman Encoding

* Input: symbols of alphabet with frequencies

e Huffman encode as follows

* Create a single-node tree for each symbol: key is
frequency; value is letter

* while there is more than one tree
* Find two trees T1 and T2 with lowest keys

* Merge them into new tree T with dummy value and
key= T|.key+ T2.key

* Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

N:4

u:1l

A:3

C:2

0 1
=2 O O
1 0 1 0 1
T2 Gi| |p1| |rR1| |E1

Left = 0; Right = 1

How To Implement Huffman

Keep a Vector of Binary Trees

Sort them by decreasing frequency

 Removing two smallest frequency trees is fast

Insert merged tree into correct sorted
location in Vector

Running Time:
* O(n log n) for initial sorting
* O(n?) for rest: O(n) re-insertions of merged trees

Can we do better...?

What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
e add(E item); // add an item

* E removeMin(); // remove min priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n?)!

We've seen this situation before....

Priority Queues

\ / »
I ——»
— —»
. @

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10

spammer .com 100 (worst)

Priority Queues

* Priority queues are also used for:

e Scheduling processes in an operating system

* Priority is function of time lost + process priority

* Order services on server

e Backup is low priority, so don’t do when high priority tasks need
to happen

Scheduling future events in a simulation

Medical waiting room

Huffman codes - order by tree size/weight

A variety of graph/network algorithms

To roughly order choices that are generated out of order

Priority Queues

Name is misleading: They are not FIFO

Always dequeue object with highest
priority (smallest rank) regardless of when it
was enqueued

Data can be received/inserted in any order,
but it is always returned/removed according
to priority

Like ordered structures (i.e., OrderedVectors

and OrderedLists), PQs require comparisons
of values

An Apology

* On behalf of computer scientists everywhere,
I'd like to apologize for the confusion that
inevitably results from the fact that

Higher Priority Lower Rank

e The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’'re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

Notes on PQ Interface

* Unlike previous structures, we do not extend
any other interfaces

* Many reasons: For example, it’s not clear that
there’s an obvious iteration order

* PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values

e Could be made to use Comparators instead...

Implementing PQs

e Queue!

* Wouldn’t work so well because we can’t insert and
remove in the “right” way (i.e., keeping things ordered)

* OrderedVector!?
e Keep ordered vector of objects
e O(n) to add/remove from vector
e Details in book...
e Can we do better than O(n)?

* Heap!

* Partially ordered binary tree

Heap

A heap is a special type of tree

A heap is a tree where:

e Root holds smallest (highest priority) value

e Subtrees are also heaps (this is important!)

So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)
Invariant for nodes

* node.value() >= node.parent.value()

* Tree need not be binary....

Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

Add new value as a leaf

“Percolate” it up the tree

e while (value < parent’s value) swap with parent
This operation preserves the heap property
since new value was the only one violating
heap property

Efficiency depends upon speed of

* Finding a place to add new node

* Finding parent

* Tree height

Removing From a PQ

Find a leaf, delete it, put its data in the root

“Push” data down through the tree

* while (data.value > value of (at least) one child)
e Swap data with data of smaller child

This operation preserves the heap property

Efficiency depends upon speed of
* Finding a leaf
 Finding locations of children

* Height of tree

Implementing Heaps

* VectorHeap

e Use conceptual array representation of BT
(ArrayTree)

e But use extensible Vector instead of array (makes
adding elements easier)
* Note:

e Root of tree is location 0 of Vector

e Children of node in location i are in locations 2i+ |
(left) and 2i+2 (right)

e Parent of node i is in location (i-1)/2

oo e | g
SN N
JANAN

22

Storedas | 3 | 7|5 [11[17|14|30|21(35(24|19|22

Vector:
| 2 3 4 5 6 7 8 9 10 Il

Implementing Heaps

* Features
* No gaps in array (array is complete)-- why?
* We always add in next available array slot (left-most available spot
in binary tree;
* We always remove using “final” leaf

* Heap Invariant becomes
 data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

* When elements are added and removed, do small amount

of work to “re-heapify”

e How small? Note: finding a node’s child or parent takes constant
time, as does finding “final” leaf or next slot for adding

e Since this heap corresponds to a full binary tree, the depth of the
tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

Let’s look at VectorHeap code....

Add/remove are both O(log n)

Data is not completely sorted

e “Partial”’ order is maintained

Note: VectorHeap(Vector<k> v)

e Takes an unordered Vector and uses it to
construct a heap

e How!

Heapifying A Vector (or array)

 Method |: Top-Down
e Assume V[O0...k] satisfies the heap property
* Now call percolate on item in location k+1

* Then V[0..k+ 1] satisfies the heap property

* Method |l: Bottom-up
e Assume V[k..n] satisfies the heap property
* Now call pushDown on item in location k- |

* Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

* Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

h
2 d2% = (h—1)2"*1 + 2 = (logn — 1)2n + 2
d=0
e This is O(n log n)
e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them

might have to move to root: O(log n) swaps
per element

Top-Down vs Bottom-Up

* Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

h
Z (h—d)2¢ = 201 — h— 2 = 2n —logn + 2
d=0

* This is O(n) --- beats top-down!

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!

Some Sums

zd_kzd _ ok+1 _q All of these can be
d=0 proven by (weak)
induction.
S B
Edzor = =D/ =D Try these to hone
your skills

d=k
zd_ d*2% = (k—1)*2F1 42 The second sum is
=0 called a geometric
d=Kk series. It works for

2 (k—d)*2% = 2kt1 _ | — 2 any r#0
d=0

HeapSort

Heaps yield another O(n log n) sort method

To HeapSort a Vector “in place”

e Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Now repeatedly remove elements to fill in Vector
from tail to head
e For(inti=v.size() — |;i>0;i--)
— RemoveMin from v[O0..i] // v[i] is now not in heap

— Put removed value in location v[i]

Mergeable Heaps

* We now want to support the additional
operation merge(heapl, heap2)

* Basic idea: heap with larger root somehow
points into heap with smaller root

e Challenges
e Points how! Where!
* How much reheapifying is needed

 How deep do trees get after many merges!?

Skew Heap

* What if heaps are not complete BTs!?

* We can implement PQs using skew heaps
instead of “regular” complete heaps

» Key differences:

e Rather than use Vector as underlying data
structure, use BT

* Need a merge operation that merges two heaps
together into one heap

e Details in book

Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)
if either S or T is empty, return the other
if T.minValue < S.minValue
swap Sand T (S now has minValue)
if S has no left subtree, T becomes left subtree
else
let temp point to right subtree of S
left subtree of S becomes right subtree of S
merge(temp, T) becomes left subtree of S
return S

Tree Summary

* Trees
* Express hierarchical relationships

* Tree structure captures relationship

* i.e., ancestry, game boards, decisions, etc.
* Heap
 Partially ordered tree based on item priority

* Node invariants: parent has higher priority than
each child

* Provides efficient PriorityQueue implementation

Improving on OrderedVector

* The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects

e add() and remove(), though, take O(n) time in the
worst case---and on average!

e Can we improve on those running times
without sacrificing the O(log n) search time!?

e Let’s find out....

Binary Trees and Orders

e Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

* |n particular, in-order traversal suggests a
natural way to hold comparable items

e For each node v in tree
o All values in left subtree of v are at most v

 All values in right subtree of v are at least v

e This leads us to...

Binary Search Trees

* Binary search trees maintain a total ordering
among elements

e Definition: A BST T is either:
* Empty
* Has root r with subtrees T, and Ty such that

* All nodes in T| have smaller value than r
e All nodes in Ty have larger value than r

e T, and Ty are also BSTs
* Examples

BST Observations

The same data can be represented by many
BST shapes

Searching for a value in a BST takes time
proportional to the height of the tree

* Reminder: trees have height, nodes have depth

Additions to a BST happen at nodes missing at
least one child (a constraint!)

Removing from a BST can involve any node

BST Operations

e BSTs will implement the OrderedStructure Interface

add(E item)
contains(E item)
get(E item)
remove (E 1tem)
iterator()

* This will provide an in-order traversal

e Runtime of add, contains, get, remove: O(height)
e Goal: Keep the height to O(log n)

e Duane’s BinarySearchTree class doesn’t achieve this...
e But his RedBlackSearchTree does!

Application: Dictionary

* Create a BST of ComparableAssociations
* Order BST by key

* Two objects are equal if keys are equal

e Example: Symbol tables (PostScript lab) are
Dictionaries

* But would only use a BST if the set of possible
symbols was very large

Application: Tree Sort

e Can we sort data using a BST?
* Yes!

e Runtime?

* To build a tree with n elements, we do n
insertions: O(n*h), where h is the maximum
height attained by the tree

* |n order traversal: O(n)
e Total runtime: O(n*h)

BST Implementation

 The BST holds the following items
* BinaryTree root: the root of the tree

* BinaryTree EMPTY: a static empty BinaryTree

* To use for all empty nodes of tree
* int count: the number of nodes in the BST
e Comparator<E> ordering: for comparing nodes
* Note: E must implement Comparable
* Two constructors: One takes a Comparator

* The other creates a NaturalComparator

BST Implementation: locate

Several methods search the tree: add,
remove, contains

We factor out common code: locate method

protected locate(BinaryTree<E> node, E v)
* Returns a BinaryTree<E> in the subtree with
root node such that either

* node has its value equal to v, or

e vis not in this subtree and node is where v would be
added as a (left or right) child

How would we implement locate()?

BST Implementation: locate

BinaryTree locate(BinaryTree root, E value)
if root’s value equals value return root
child € child of root that should hold value
if child is empty tree, return root
// value not in subtree based at root
else //keep looking

return locate(child, value)

