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Administrative Details

* Problem Set 3 is available online

* Due next Friday at beginning of class!



Last Time

* Array Representations of (Binary) Trees
* Application: Huffman Encoding



Today

Improving Huffman’s Algorithm
* Priority Queues & Heaps

e A “somewhat-ordered” data structure

e Conceptual structure
e Efficient implementations
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Recall : Huffman Encoding Algorithm

e Keep a Vector of Binary Trees

* Sort them by decreasing frequency

 Removing two smallest frequency trees is fast

* Insert merged tree into correct (sorted)
location in Vector

* Running Time:
* O(n log n) for initial sorting
e O(n?) for rest: O(n) for each re-insertion

e Can we do better...?



Optimality of Huffman Encoding

Measuring Quality of an Encoding

* Let T be an encoding tree for a variable-length
binary encoding for I = {(a;, f;):1 <i < n}
° a4, ..., a, are letters, f3, ..., f,, are frequencies

* Let d; be the depthof a; in T
* Define E(T)—the encoding length of T—by
n

ET) =) f; - d(a)

Theorem: The tree computed by Huffman
minimizes E (T) over all prefix-free encodings T



What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
e add(E item); // add an item

* E removeMin(); // remove min priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the
Huffman while loop would take O(n log n)
time instead of O(n?)!

We've seen this situation before....



Priority Queues

* A Priority Queue is a data structure that supports
the operations
e Add(E value) : Add value to PQ
* removeMin() : remove and return item with minimum value from PQ

e getMin() : return but don’t remove item with minimum value

 size() : return number of objects in PQ

* There are many possible implementations

e Goal: implement all operations to run in O(log n) time.



PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();



Heap

A heap is a special type of tree
e Root holds smallest (highest priority) value
e Subtrees are also heaps (recursive definition!)

So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

Invariant for nodes: For each child of each node
* node.value() <= child.value() // if child exists

Several valid heaps for same data set (no unique
representation)



Inserting into a PQ

Add new value as a leaf

“Percolate” it up the tree

e while (value < parent’s value) swap with parent
This operation preserves the heap property
since new value was the only one violating
heap property

Efficiency depends upon speed of

* Finding a place to add new node

* Finding parent

e Depth of newly added node



Removing From a PQ

Find a leaf, delete it, put its data in the root

“Push” data down through the tree

* while ( data.value > value of (at least) one child )
e Swap data with data of smallest child

This operation preserves the heap property

Efficiency depends upon speed of
* Finding a leaf
 Finding locations of children

* Height of tree



Implementing Heaps

* VectorHeap

e Use conceptual array representation of BT
(ArrayTree)

e But use extensible Vector instead of array (makes
adding elements easier)
* Note:

e Root of tree is location 0 of Vector

e Children of node in location i are in locations 2i+ |
(left) and 2i+2 (right)

e Parent of node i is in location (i-1)/2



Implementing Heaps

* Features
* No gaps in array (array is complete)-- why?
* We always add in next available array slot (left-most available spot
in binary tree;
* We always remove using “final” leaf

* Heap Invariant becomes
 data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

* When elements are added and removed, do small amount

of work to “re-heapify”

e How small? Note: finding a node’s child or parent takes constant
time, as does finding “final” leaf or next slot for adding

e Since this heap corresponds to a full binary tree, the depth of the
tree is O(log n), so percolate/pushDown takes O(log n) time!



VectorHeap Summary

Let’s look at VectorHeap code....

Add/remove are both O(log n)

Data is not completely sorted

e “Partial”’ order is maintained

Note: VectorHeap(Vector<k> v)

e Takes an unordered Vector and uses it to
construct a heap

e How!



A Little Bit O’ Math

Some facts about binary trees of height h

* Number n; of nodes at level k < h
1 <n, <2k

 Number F; of nodes in full binary tree of

height h:
h
z Zi — 2h+1 —1
1=0

* Number N, of nodes in tree of height h
h+1 <N, <211



Some Sums

zd_kzd _ ok+1 _q All of these can be
d=0 proven by (weak)
induction.
S B
Edzor = =D/ =D Try these to hone
your skills

d=k
zd_ d*2% = (k—1)*2F1 42 The second sum is
=0 called a geometric
d=Kk series. It works for

2 (k—d)*2% = 2kt1 _ | — 2 any r#0
d=0



Heapifying A Vector (or array)

 Method |: Top-Down
e Assume V[O0...k] satisfies the heap property
* Now call percolate on item in location k+1

* Then V[0..k+ 1] satisfies the heap property

* Method |l: Bottom-up
e Assume V[k..n] satisfies the heap property
* Now call pushDown on item in location k- |

* Then V[k-1..n] satisfies heap property



Top-Down vs Bottom-Up

* Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

h
2 d2% = (h—1)2"*1 + 2 = (logn — 1)2n + 2
d=0
e This is O(n log n)
e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them

might have to move to root: O(log n) swaps
per element



Top-Down vs Bottom-Up

* Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

h
Z (h—d)2¢ = 201 — h— 2 = 2n —logn + 2
d=0

* This is O(n) --- beats top-down!

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!



Some Sums

zd_kzd _ ok+1 _q All of these can be
d=0 proven by (weak)
induction.
S B
Edzor = =D/ =D Try these to hone
your skills

d=k
zd_ d*2% = (k—1)*2F1 42 The second sum is
=0 called a geometric
d=Kk series. It works for

2 (k—d)*2% = 2kt1 _ | — 2 any r#0
d=0



HeapSort

Heaps yield another O(n log n) sort method

To HeapSort a Vector “in place”

e Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Now repeatedly remove elements to fill in Vector
from tail to head
e For(inti=v.size() — |;i>0;i--)
— RemoveMin from v[0..i] I/ v[i] is now not in heap

— Put removed value in location v[i]



