
CSCI 136
Data Structures &

Advanced Programming

Lecture 22
Fall 2019

Instructor: B&S

Administrative Details

• Problem Set 3 is available online
• Due next Friday at beginning of class!

2

Last Time

• Array Representations of (Binary) Trees
• Application: Huffman Encoding

3

Today

Improving Huffman’s Algorithm
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations

4

An Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

Recall : Huffman Encoding Algorithm

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct (sorted)
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) for each re-insertion

• Can we do better...?

Optimality of Huffman Encoding
Measuring Quality of an Encoding
• Let T be an encoding tree for a variable-length

binary encoding for 𝐼 = 𝑎$, 𝑓$: 1 ≤ 𝑖 ≤ 𝑛
• 𝑎,, … , 𝑎. are letters, 𝑓,, … , 𝑓. are frequencies

• Let 𝑑$ be the depth of 𝑎$ in T

• Define E(T)–the encoding length of T–by

𝐸 𝑇 =2
$3,

.

𝑓$ 4 𝑑(𝑎$)

Theorem: The tree computed by Huffman
minimizes 𝐸 𝑇 over all prefix-free encodings T

What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman while loop would take O(n log n)
time instead of O(n2)!

• We’ve seen this situation before….

Priority Queues

• A Priority Queue is a data structure that supports
the operations
• Add(E value) : Add value to PQ

• removeMin() : remove and return item with minimum value from PQ

• getMin() : return but don’t remove item with minimum value

• size() : return number of objects in PQ

• There are many possible implementations

• Goal: implement all operations to run in O(log n) time.

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Heap

• A heap is a special type of tree
• Root holds smallest (highest priority) value
• Subtrees are also heaps (recursive definition!)

• So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

• Invariant for nodes: For each child of each node
• node.value() <= child.value() // if child exists

• Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property
since new value was the only one violating
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Depth of newly added node

Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while (data.value > value of (at least) one child)

• Swap data with data of smallest child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree

Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT

(ArrayTree)
• But use extensible Vector instead of array (makes

adding elements easier)
• Note:

• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2

Implementing Heaps

• Features
• No gaps in array (array is complete)-- why?

• We always add in next available array slot (left-most available spot
in binary tree;

• We always remove using “final” leaf

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount
of work to “re-heapify”
• How small? Note: finding a node’s child or parent takes constant

time, as does finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the

tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap

• How?

A Little Bit O’ Math
Some facts about binary trees of height ℎ
• Number 𝑛8 of nodes at level 𝑘 ≤ ℎ

1 ≤ 𝑛8 ≤ 28

• Number 𝐹< of nodes in full binary tree of
height ℎ:

2
$3=

<

2$ = 2<>, − 1

• Number 𝑁< of nodes in tree of height h
ℎ + 1 ≤ 𝑁< ≤ 2<>, − 1

Some Sums

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠0

2
B3=

B38
𝑑 ∗ 2B = 𝑘 − 1 ∗ 28>, + 2

2
B3=

B38
𝑘 − 𝑑 ∗ 2B = 28>, − 𝑘 − 2

2
B3=

B38
2B = 28>, − 1

2
B3=

B38
𝑟B = ⁄(𝑟8>,−1) (𝑟 − 1)

Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1

• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1

• Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

2
B3=

<
𝑑2B = ℎ − 1 2<>, + 2 = log 𝑛 − 1 2𝑛 + 2

• This is O(n log n)
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
might have to move to root: O(log n) swaps
per element

• Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

2
B3=

<
(ℎ − 𝑑)2B = 2<>, − ℎ − 2 = 2𝑛 − log 𝑛 + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!!

Some Sums

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠0

2
B3=

B38
𝑑 ∗ 2B = 𝑘 − 1 ∗ 28>, + 2

2
B3=

B38
𝑘 − 𝑑 ∗ 2B = 28>, − 𝑘 − 2

2
B3=

B38
2B = 28>, − 1

2
B3=

B38
𝑟B = ⁄(𝑟8>,−1) (𝑟 − 1)

HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]

