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Administrative Details

• Problem Set 3 is available online
• Due next Friday at beginning of class!
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Last Time

• Array Representations of (Binary) Trees
• Application: Huffman Encoding
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Today

Improving Huffman’s Algorithm
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations
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An Encoding Tree
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Recall : Huffman Encoding Algorithm

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct (sorted) 
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) for each re-insertion

• Can we do better...?



Optimality of Huffman Encoding
Measuring Quality of an Encoding
• Let T be an encoding tree for a variable-length 

binary encoding for 𝐼 = 𝑎$, 𝑓$ : 1 ≤ 𝑖 ≤ 𝑛
• 𝑎,, … , 𝑎. are letters, 𝑓,, … , 𝑓. are frequencies

• Let 𝑑$ be the depth of 𝑎$ in T

• Define E(T)–the encoding length of T–by

𝐸 𝑇 =2
$3,

.

𝑓$ 4 𝑑(𝑎$)

Theorem: The tree computed by Huffman 
minimizes 𝐸 𝑇 over all prefix-free encodings T



What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin();  // remove min priority item

• S should be designed to make these two 
operations fast

• If, say, they both ran in O(log n) time, the 
Huffman while loop would take O(n log n) 
time instead of O(n2)!

• We’ve seen this situation before….



Priority Queues

• A Priority Queue is a data structure that supports 
the operations
• Add(E value) : Add value to PQ

• removeMin() : remove and return item with minimum value from PQ

• getMin() : return but don’t remove item with minimum value

• size() : return number of objects in PQ

• There are many possible implementations

• Goal: implement all operations to run in O(log n) time.



PQ Interface

public interface PriorityQueue<E extends Comparable<E>> { 
public E getFirst(); // peeks at minimum element
public E remove();   // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty(); 
public int size(); 
public void clear();

} 



Heap

• A heap is a special type of tree
• Root holds smallest (highest priority) value
• Subtrees are also heaps (recursive definition!)

• So values increase in priority (decrease in rank) from 
leaves to root (from descendant to ancestor)

• Invariant for nodes: For each child of each node
• node.value() <= child.value() // if child exists

• Several valid heaps for same data set (no unique 
representation) 



Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property 
since new value was the only one violating 
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Depth of newly added node



Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while ( data.value > value of (at least) one child )

• Swap data with data of smallest child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree



Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT 

(ArrayTree)
• But use extensible Vector instead of array (makes 

adding elements easier)
• Note: 

• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1 

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2



Implementing Heaps

• Features
• No gaps in array (array is complete)-- why?

• We always add in next available array slot (left-most available spot 
in binary tree;

• We always remove using “final” leaf

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount 
of work to “re-heapify”
• How small? Note: finding a node’s child or parent takes constant 

time, as does finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the 

tree is O(log n), so percolate/pushDown takes O(log n) time!



VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to 

construct a heap

• How?



A Little Bit O’ Math
Some facts about binary trees of height ℎ
• Number 𝑛8 of nodes at level 𝑘 ≤ ℎ

1 ≤ 𝑛8 ≤ 28

• Number 𝐹< of nodes in full binary tree of 
height ℎ:

2
$3=

<

2$ = 2<>, − 1

• Number 𝑁< of nodes in tree of height h
ℎ + 1 ≤ 𝑁< ≤ 2<>, − 1



Some Sums

All of these can be 
proven by (weak) 
induction.

Try these to hone 
your skills

The second sum is 
called a geometric 
series. It works for 
any r≠0

2
B3=

B38
𝑑 ∗ 2B = 𝑘 − 1 ∗ 28>, + 2

2
B3=

B38
𝑘 − 𝑑 ∗ 2B = 28>, − 𝑘 − 2

2
B3=

B38
2B = 28>, − 1

2
B3=

B38
𝑟B = ⁄(𝑟8>,−1) (𝑟 − 1)



Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1

• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1

• Then V[k-1..n] satisfies heap property



Top-Down vs Bottom-Up

2
B3=

<
𝑑2B = ℎ − 1 2<>, + 2 = log 𝑛 − 1 2𝑛 + 2

• This is O(n log n)
• Some intuition: most of the elements are in 

the lowest levels of the tree, so each of them 
might have to move to root: O(log n) swaps 
per element

• Top-down heapify: elements at depth d may be 
swapped d times: Total # of swaps is at most



Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be 
swapped h-d times: Total # of swaps is at most

2
B3=

<
(ℎ − 𝑑)2B = 2<>, − ℎ − 2 = 2𝑛 − log 𝑛 + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in 

the lowest levels of the tree, so each of them 
will only be pushed down (swapped) a small 
number of times SO COOL!!!



Some Sums

All of these can be 
proven by (weak) 
induction.

Try these to hone 
your skills

The second sum is 
called a geometric 
series. It works for 
any r≠0

2
B3=

B38
𝑑 ∗ 2B = 𝑘 − 1 ∗ 28>, + 2

2
B3=

B38
𝑘 − 𝑑 ∗ 2B = 28>, − 𝑘 − 2

2
B3=

B38
2B = 28>, − 1

2
B3=

B38
𝑟B = ⁄(𝑟8>,−1) (𝑟 − 1)



HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse 

ordering: that is: highest rank/lowest priority 
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector 
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]


