CSCI 136 Data Structures & Advanced Programming

> Lecture 22 Fall 2019 Instructor: B&S

Administrative Details

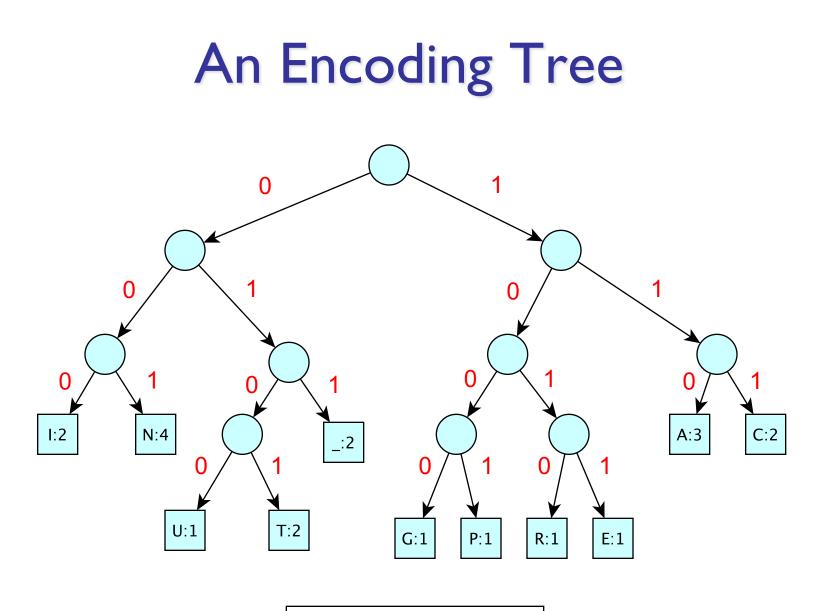
- Problem Set 3 is available online
 - Due next Friday at beginning of class!

Last Time

- Array Representations of (Binary) Trees
- Application: Huffman Encoding

Improving Huffman's Algorithm

- Priority Queues & Heaps
 - A "somewhat-ordered" data structure
 - Conceptual structure
 - Efficient implementations



Left = 0; Right = 1

Recall : Huffman Encoding Algorithm

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct (sorted) location in Vector
- Running Time:
 - O(n log n) for initial sorting
 - $O(n^2)$ for rest: O(n) for each re-insertion
- Can we do better...?

Optimality of Huffman Encoding

Measuring Quality of an Encoding

- Let T be an encoding tree for a variable-length binary encoding for $I = \{(a_i, f_i): 1 \le i \le n\}$
 - a_1, \ldots, a_n are letters, f_1, \ldots, f_n are frequencies
 - Let d_i be the depth of a_i in T
- Define E(T)-the encoding length of T-by $E(T) = \sum_{i=1}^{n} f_i \cdot d(a_i)$

Theorem: The tree computed by Huffman minimizes E(T) over all prefix-free encodings T

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - add(E item); // add an item
 - E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in O(log n) time, the Huffman while loop would take O(n log n) time instead of O(n²)!
- We've seen this situation before....

Priority Queues

- A Priority Queue is a data structure that supports the operations
 - Add(E value) : Add value to PQ
 - removeMin() : remove and return item with minimum value from PQ
 - getMin() : return but don't remove item with minimum value
 - size() : return number of objects in PQ
- There are many possible implementations
- Goal: implement all operations to run in O(log n) time.

PQ Interface

public interface PriorityQueue<E extends Comparable<E>>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Heap

- A heap is a special type of tree
 - Root holds smallest (highest priority) value
 - Subtrees are also heaps (recursive definition!)
- So values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
- Invariant for nodes: For each child of each node
 - node.value() <= child.value() // if child exists
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
 - while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Depth of newly added node

Removing From a PQ

- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of **smallest** child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree

Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
 - Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2

Implementing Heaps

- Features
 - No gaps in array (array is complete)-- why?
 - We always add in next available array slot (left-most available spot in binary tree;
 - We always remove using "final" leaf
 - Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i] <= data[2i+2] (or kids might be null)
 - When elements are added and removed, do small amount of work to "re-heapify"
 - How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

• Let's look at VectorHeap code....

- Add/remove are both O(log n)
- Data is not completely sorted
 - "Partial" order is maintained
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How?

A Little Bit O' Math

Some facts about binary trees of height h

- Number n_k of nodes at level $k \le h$ $1 \le n_k \le 2^k$
- Number F_h of nodes in full binary tree of height h:

$$\sum_{i=0}^{h} 2^i = 2^{h+1} - 1$$

• Number N_h of nodes in tree of height h $h+1 \le N_h \le 2^{h+1} - 1$

Some Sums

$$\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1$$

$$\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1}-1)}{(r-1)}$$

$$\sum_{d=0}^{d=k} d * 2^d = (k-1) * 2^{k+1} + 2$$

$$\sum_{d=0}^{d=k} (k-d) * 2^d = 2^{k+1} - k - 2$$

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any r≠0

Heapifying A Vector (or array)

- Method I: Top-Down
 - Assume V[0...k] satisfies the heap property
 - Now call percolate on item in location k+1
 - Then V[0..k+1] satisfies the heap property
- Method II: Bottom-up
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-I
 - Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

 Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is at most

$$\sum_{d=0}^{h} d2^{d} = (h-1)2^{h+1} + 2 = (\log n - 1)2n + 2$$

- This is O(n log n)
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: O(log n) swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped h-d times: Total # of swaps is at most $\sum_{d=0}^{h} (h-d)2^{d} = 2^{h+1} - h - 2 = 2n - \log n + 2$
 - This is O(n) --- beats top-down!
 - Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times
 SO COOL!!!

Some Sums

$$\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1$$

$$\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1}-1)}{(r-1)}$$

$$\sum_{d=0}^{d=k} d * 2^d = (k-1) * 2^{k+1} + 2$$

$$\sum_{d=0}^{d=k} (k-d) * 2^d = 2^{k+1} - k - 2$$

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any r≠0

HeapSort

- Heaps yield another O(n log n) sort method
- To HeapSort a Vector "in place"
 - Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 - Now repeatedly remove elements to fill in Vector from tail to head
 - For(int i = v.size() I; i > 0; i--)
 - RemoveMin from v[0..i] // v[i] is now not in heap
 - Put removed value in location v[i]