CSCI 136
 Data Structures \& Advanced Programming

Lecture 20
 Fall 2019

Instructor: Bill \& Sam

Administration

- Lab 7 today!
- Removing I-3PM TA Office Hours Thursday
- Bill still has his

Lab 7: Representing Numbers

- Humans usually think of numbers in base 10
- But even though we write int $\mathrm{x}=23$; the computer stores x as a sequence of 1 s and 0 s
- Recall Lab 3:
public static String printInBinary(int n) \{ if ($\mathrm{n}<=1$)
return "" + n\%2;
return printInBinary(n/2)+n\%2;
\}
- 000000000000000000000000000 IOIII

Bitwise Operations

- We can use bitwise operations to manipulate the 1 s and 0 s in the binary representation
- Bitwise 'and': \&
- Bitwise 'or':
- Also useful: bit shifts
- Bit shift left: <<
- Bit shift right: >>

\& and

- Given two integers a and b, the bitwise or expression $\mathrm{a} \mid \mathrm{b}$ returns an integer s.t.
- At each bit position, the result has a 1 if that bit position had a 1 in EITHER a OR b (or both)
- 3 | $6=$?
- Given two integers a and b, the bitwise and expression $\mathrm{a} \& \mathrm{~b}$ returns an integer s.t.
- At each bit position, the result has a 1 if that bit position had a 1 in BOTH a AND b
- 3 \& $6=$?

\gg and <<

- $\mathrm{a} \ll \mathrm{i}$ returns a , with bits shifted left by i positions
- "Drop off" left side, right side filled with zeros
- $a \gg i$ returns a, with bits shifted right by i positions
- "Drop off" right side, left side filled in with current bit
- (>>> means right shift filling in with 0)

\gg and <<

- $\mathrm{a} \ll \mathrm{i}$ returns a , with bits shifted left by i positions
- "Drop off" left side, right side filled with zeros
- $9 \ll 2$ is?

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\gg and \ll

- $a \ll i$ returns a, with bits shifted left by i positions
- "Drop off" left side, right side filled with zeros
- I07374I833 << 2 is?

0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\gg and <<

- Given two integers a and i>0, if no overflow ($\mathrm{a} \ll \mathrm{i}$) returns $\left(\mathrm{a} * 2^{i}\right)$
- $1 \ll 4=$?
- Given two positive integers a and i,
(a >> i) returns (a / 2^{i})
- 1 >> 4 = ?
- $97 \gg 3=$? $\quad(97=1100001)$
- Be careful about shifting left and "overflow"!!!
- Watch out for negative numbers

Revisiting printlnBinary(int n)

- How would we rewrite a recursive printInBinary using bit shifts and bitwise operations?
public static String printInBinary(int n) \{

$$
\begin{aligned}
& \text { if } \quad(\mathrm{n}<=1)\{ \\
& \quad \text { return } " "+n ;
\end{aligned}
$$

return printInBinary $(\mathrm{n} \gg 1)+(\mathrm{n} \& 1)$; \}

Revisiting printlnBinary(int n)

- How would we write an iterative printInBinary using bit shifts and bitwise operations?
public static String printInBinary(int n,
int width) \{
String result = "";
for (int $i=0 ; i<w i d t h ; i++)$
if $((n \&(1 \ll i))==0)$
result $=0$ + result;
else

$$
\text { result }=1 \text { + result; }
$$

return result;

Lab 7: Two Towers

- Goal: given a set of blocks, iterate through all possible subsets to find the best set

- "Best" set produces the most balanced towers
- Strategy: create an iterator that uses the bits in a binary number to represent subsets

Lab 7: Two Towers

- A block can either be in the set or out
- If bit is a 1 , in. If bit is a 0 , out

Questions?

- We will write a "Subsetlterator" to enumerate all possible subsets of a Vector<E>
- We will use Subsetlterator to solve this problem
- Can also be used to solve other problems
- Identify all Subsequences of a String that are words
- You just need a dictionary of legal words
- Coming soon!

Alternative Tree Representations

- Total \# "slots" = 4n
- Since each BinaryTree maintains a reference to left, right, parent, value
- 2-4x more overhead than vector, SLL, array, ...
- But trees capture successor and predecessor relationships that other data structures don' t ...

Array-Based Binary Trees

- Encode structure of tree in array indexes
- Put root at index 0
- Where are children of node i?
- Children of node i are at $2 i+1$ and $2 i+2$
- Look at example
- Where is parent of node j ?
- Parent of node j is at $(\mathrm{j}-\mathrm{I}) / 2$

Array-Based Binary Trees

Stored as
Tree:

Stored as Array:

$\mathbf{3}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{1 4}$	$\mathbf{3 0}$	$\mathbf{2 1}$	$\mathbf{3 5}$	$\mathbf{2 4}$	$\mathbf{1 9}$	$\mathbf{2 2}$
0	1	2	3	4	5	6	7	8	9	10	11

ArrayTree Tradeoffs

- Why are ArrayTrees good?
- Save space for links
- No need for additional memory allocated/garbage collected
- Works well for full or complete trees
- Complete: All levels except last are full and all gaps are at right
- "A complete binary tree of height h is a full binary tree with 0 or more of the rightmost leaves of level h removed"
- Why bad?
- Could waste a lot of space
- Tree of height of n requires $2^{n+1}-1$ array slots even if only $O(n)$ elements

Application: Huffman Codes (a CS 256 Preview)

- Computers encode a text as a sequence of bits ASCII TABLE

Decimal	Hex	Char									
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	-
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	\#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	\%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	\&	70	46	F	102	66	f
7	7	[BELL]	39	27	'	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	1	72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	I	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	B	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	,	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2 F	1	79	4F	0	111	6 F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	5
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	\mathbf{x}
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1 A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	\{
28	1C	[FILE SEPARATOR]	60	3C	$<$	92	5 C	1	124	7 C	,
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	\}
30	1E	[RECORD SEPARATOR]	62	3E	$>$	94	5E	ヘ	126	7E	\sim
31	1 F	[UNIT SEPARATOR]	63	3 F	?	95	5 F	-	127	7F	[DEL]

Huffman Codes

- Goal: Encode a text as a sequence of bits
- Sometimes, use ASCII: I character $=8$ bits (I byte)
- Allows for $2^{8}=256$ different characters
- 'A' = 0100000I, 'B' = 01000010
- Space to store "AN_ANTARCTIC_PENGUIN"
- 20 characters $->20 * 8$ bits $=160$ bits
- Is there a better way?
- Only II symbols are used (ANTRCIPEGU_)
- Only need 4 bits per symbol (since $2^{4}>1$ I)!
- $20 * 4=80$ bits instead of 160 !
- Can we still do better??

Huffman Codes

- Example
- AN_ANTARCTIC_PENGUIN
- Compute letter frequencies

- Key Idea: Use fewer bits for most common letters

A	C	E	C		N	P	R	T	U	
3	2	1	1	2	4	1	1	2	1	2
110	111	1011	1000	000	001	1001	1010	0101	0100	011

- Uses 67 bits to encode entire string

The Encoding Tree

Features of Good Encoding

- Prefix property: No encoding is a prefix of another encoding (letters appear at leaves)
- No node has exactly one child
- Nodes with lower frequency have greater depth

Huffman Encoding

- Input: symbols of alphabet with frequencies
- Huffman encode as follows
- Create a single-node tree for each symbol: key is frequency; value is letter
- while there is more than one tree
- Find two trees TI and T2 with lowest keys
- Merge them into new tree T with dummy value and key= Tl.key+ T2.key
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

The Encoding Tree

How To Implement Huffman

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
- Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
- $O(n \log n)$ for initial sorting
- $O\left(n^{2}\right)$ for rest: $O(n)$ re-insertions of merged trees
- Can we do better...?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
- add(E item); // add an item
- E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in $O(\log n)$ time, the Huffman algorithm would take $O(n \log n)$ time instead of $O\left(n^{2}\right)$!
- We've seen this situation before....

Priority Queues

Packet Sources May Be Ordered by Sender

```
sysnet.cs.williams.edu
bull.cs.williams.edu
priority = 1 (best)
yahoo.com 10
spammer.com
100 (worst)
```


Priority Queues

- Priority queues are also used for:
- Scheduling processes in an operating system
- Priority is function of time lost + process priority
- Order services on server
- Backup is low priority, so don't do when high priority tasks need to happen
- Scheduling future events in a simulation
- Medical waiting room
- Huffman codes - order by tree size/weight
- A variety of graph/network algorithms
- To roughly order choices that are generated out of order

Priority Queues

- Name is misleading: They are not FIFO
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

An Apology

- On behalf of computer scientists everywhere, I'd like to apologize for the confusion that inevitably results from the fact that Higher Priority Lower Rank
- The PQ removes the lowest ranked value in an ordering: that is, the highest priority value!

We're sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> \{ public E getFirst(); // peeks at minimum element public E remove(); // removes minimum element public void add(E value); // adds an element public boolean isEmpty();
public int size(); public void clear();
\}

Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
- Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
- Could be made to use Comparators instead...

Implementing PQs

- Queue?
- Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
- Keep ordered vector of objects
- $O(n)$ to add/remove from vector
- Details in book...
- Can we do better than $O(n)$?
- Heap!
- Partially ordered binary tree

Heap

- A heap is a special type of tree
- A heap is a tree where:
- Root holds smallest (highest priority) value
- Subtrees are also heaps (this is important!)
- So values increase in priority (decrease in rank) from leaves to root (from descendant to ancestor)
- Invariant for nodes
- node.value() >= node.parent.value()
- Tree need not be binary....
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
- while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
- Finding a place to add new node
- Finding parent
- Tree height

Removing From a PQ

- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
- while (data.value > value of (at least) one child)
- Swap data with data of smaller child
- This operation preserves the heap property
- Efficiency depends upon speed of
- Finding a leaf
- Finding locations of children
- Height of tree

