
CSCI 136
Data Structures &

Advanced Programming

Lecture 21
Fall 2019

Instructor: B&S

Last Time

• Traversing Binary Trees
• Lab 7: Two Towers

2

Today

• Array Representations of (Binary) Trees
• Application: Huffman Encoding
• Priority Queues & Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations

3

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only

O(n) elements

Application: Huffman Codes
(a CS 256 Preview)

• Computers encode a text as a sequence of bits

Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• ‘A’ = 01000001, ‘B’ = 01000010
• Space to store “AN_ANTARCTIC_PENGUIN”

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

Features of Good Encoding

• Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater

depth

• All optimal length unambiguous encodings
have these features

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?

What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n2)!

• We’ve seen this situation before….

Priority Queues

Packet Sources May Be Ordered by Sender
sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10
spammer.com 100 (worst)

Lookup

Priority Queues

• Priority queues are also used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight

• A variety of graph/network algorithms
• To roughly order choices that are generated out of order

Priority Queues

• Name is misleading: They are not FIFO
• Always dequeue object with highest

priority (smallest rank) regardless of when it
was enqueued

• Data can be received/inserted in any order,
but it is always returned/removed according
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons
of values

An Apology

• On behalf of computer scientists everywhere,
I’d like to apologize for the confusion that
inevitably results from the fact that

Higher Priority Lower Rank

• The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

• Unlike previous structures, we do not extend
any other interfaces
• Many reasons: For example, it’s not clear that

there’s an obvious iteration order

• PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values
• Could be made to use Comparators instead…

Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap!
• Partially ordered binary tree

Heap

• A heap is a special type of tree
• A heap is a tree where:

• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is important!)

• So values increase in priority (decrease in value)
from leaves to root (from descendant to ancestor)

• Invariant for nodes
• node.value() >= node.parent.value()

• Tree need not be binary….

• Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property
since new value was the only one violating
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Tree height

Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while (data.value > value of (at least) one child)

• Swap data with data of smallest child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Determining child with smallest value
• Height of tree

Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT

(ArrayTree)
• But use extensible Vector instead of array (makes

adding elements easier)
• Note:

• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2

Implementing Heaps

• Features
• No gaps in array (array is complete)-- why?

• We always add in next available array slot (left-most available spot
in binary tree;

• We always remove using “final” leaf

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount
of work to “re-heapify”
• How small? Note: finding a node’s child or parent takes constant

time, as does finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the

tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap

• How?

Heapifying A Vector (or array)

• Method I: Top-Down
• Assume V[0...k] satisfies the heap property
• Now call percolate on item in location k+1

• Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
• Assume V[k..n] satisfies the heap property
• Now call pushDown on item in location k-1

• Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

!
"#$

%
𝑑2" = ℎ − 1 2%,- + 2 = log 𝑛 − 1 2𝑛 + 2

• This is O(n log n)
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
might have to move to root: O(log n) swaps
per element

• Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

Top-Down vs Bottom-Up

• Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

!
"#$

%
(ℎ − 𝑑)2" = 2%,- − ℎ − 2 = 2𝑛 − log 𝑛 + 2

• This is O(n) --- beats top-down!
• Some intuition: most of the elements are in

the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!!

Some Sums

All of these can be
proven by (weak)
induction.

Try these to hone
your skills

The second sum is
called a geometric
series. It works for
any r≠0

!
"#$

"#5
𝑑 ∗ 2" = 𝑘 − 1 ∗ 25,- + 2

!
"#$

"#5
𝑘 − 𝑑 ∗ 2" = 25,- − 𝑘 − 2

!
"#$

"#5
2" = 25,- − 1

!
"#$

"#5
𝑟" = ⁄(𝑟5,-−1) (𝑟 − 1)

HeapSort

• Heaps yield another O(n log n) sort method
• To HeapSort a Vector “in place”
• Perform bottom-up heapify on the reverse

ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

• Now repeatedly remove elements to fill in Vector
from tail to head
• For(int i = v.size() – 1; i > 0; i--)

– RemoveMin from v[0..i] // v[i] is now not in heap

– Put removed value in location v[i]

Skew Heap

• What if heaps are not complete BTs?
• We can implement PQs using skew heaps

instead of “regular” complete heaps
• Key differences:
• Rather than use Vector as underlying data

structure, use BT
• Need a merge operation that merges two heaps

together into one heap

• Details in book

