CSCI 136 Data Structures & Advanced Programming

> Lecture 21 Fall 2019 Instructor: B&S

Last Time

- Traversing Binary Trees
- Lab 7: Two Towers

Today

- Array Representations of (Binary) Trees
- Application: Huffman Encoding
- Priority Queues & Heaps
 - A "somewhat-ordered" data structure
 - Conceptual structure
 - Efficient implementations

Array-Based Binary Trees

- Encode structure of tree in array indexes
 - Put root at index 0
- Where are children of node i?
 - Children of node i are at 2i+1 and 2i+2
 - Look at example
- Where is parent of node j?
 - Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

- Why are ArrayTrees good?
 - Save space for links
 - No need for additional memory allocated/garbage collected
 - Works well for full or complete trees
 - Complete: All levels except last are full and all gaps are at right
 - "A complete binary tree of height h is a full binary tree with 0 or more of the rightmost leaves of level h removed"

• Why bad?

- Could waste a lot of space
- Tree of height of n requires 2ⁿ⁺¹-1 array slots even if only O(n) elements

Application: Huffman Codes (a CS 256 Preview)

• Computers encode a text as a sequence of bits

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	JDecimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	κ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	Ν	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	ЗA		90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
			-			-		-			-

Huffman Codes

- Goal: Encode a text as a sequence of bits
- Normally, use ASCII: I character = 8 bits (I byte)
 - Allows for 2⁸ = 256 different characters
- 'A' = 01000001, 'B' = 01000010
- Space to store "AN_ANTARCTIC_PENGUIN"
 - 20 characters -> 20*8 bits = 160 bits
- Is there a better way?
 - Only II symbols are used (ANTRCIPEGU_)
 - Only need 4 bits per symbol (since 2⁴>11)!
 - 20*4 = 80 bits instead of 160!
 - Can we still do better??

Huffman Codes

- Example
 - AN_ANTARCTIC_PENGUIN
 - Compute letter frequencies

Α	С	E	G		N	Р	R	Т	U	_
3	2	I.	I	2	4	I	I	2	I	2

• Key Idea: Use fewer bits for most common letters

Α	С	E	G		Ν	Ρ	R	Т	U	_
3	2	I	I	2	4	I	I	2	I	2
110		1011	1000	000	001	1001	1010	0101	0100	011

• Uses 67 bits to encode entire string

Huffman Codes

Α	С	E	G		Ν	Ρ	R	Т	U	_
3	2	I	I	2	4	I	I	2	I	2
110		1011	1000	000	001	1001	1010	0101	0100	011

- Uses 67 bits to encode entire string
- Can we do better?

Α	С	E	G		Ν	Ρ	R	т	U	_
3	2	I	I	2	4	I	I	2	I	2
100	010	1100	1101	011	101	0001	0000	001	1110	1111

• Uses 67 bits to encode entire string

Left = 0; Right = 1

Features of Good Encoding

- Prefix property: No encoding is a prefix of another encoding (letters appear at leaves)
- No internal node has a single child
- Nodes with lower frequency have greater depth

 All optimal length unambiguous encodings have these features

Huffman Encoding

- Input: symbols of alphabet with frequencies
- Huffman encode as follows
 - Create a single-node tree for each symbol: key is frequency; value is letter
 - while there is more than one tree
 - Find two trees TI and T2 with lowest keys
 - Merge them into new tree T with dummy value and key= T1.key+ T2.key
- Theorem: The tree computed by Huffman is an optimal encoding for given frequencies

Left = 0; Right = 1

How To Implement Huffman

- Keep a Vector of Binary Trees
- Sort them by decreasing frequency
 - Removing two smallest frequency trees is fast
- Insert merged tree into correct sorted location in Vector
- Running Time:
 - O(n log n) for initial sorting
 - O(n²) for rest: O(n) re-insertions of merged trees
- Can we do better...?

What Huffman Encoder Needs

- A structure S to hold items with priorities
- S should support operations
 - add(E item); // add an item
 - E removeMin(); // remove min priority item
- S should be designed to make these two operations fast
- If, say, they both ran in O(log n) time, the Huffman algorithm would take O(n log n) time instead of O(n²)!
- We've seen this situation before....

Priority Queues

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu	priority = 1 (best)
bull.cs.williams.edu	2
yahoo.com	10
spammer.com	100 (worst)

Priority Queues

- Priority queues are also used for:
 - Scheduling processes in an operating system
 - Priority is function of time lost + process priority
 - Order services on server
 - Backup is low priority, so don't do when high priority tasks need to happen
 - Scheduling future events in a simulation
 - Medical waiting room
 - Huffman codes order by tree size/weight
 - A variety of graph/network algorithms
 - To roughly order choices that are generated out of order

Priority Queues

- Name is misleading: They are **not FIFO**
- Always dequeue object with highest priority (smallest rank) regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

An Apology

 On behalf of computer scientists everywhere, I'd like to apologize for the confusion that inevitably results from the fact that

Higher Priority Lower Rank

• The PQ removes the *lowest ranked* value in an ordering: that is, the *highest priority* value!

We're sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces
 - Many reasons: For example, it's not clear that there's an obvious iteration order
- PriorityQueue uses Comparables: methods consume Comparable parameters and return Comparable values
 - Could be made to use Comparators instead...

Implementing PQs

- Queue?
 - Wouldn't work so well because we can't insert and remove in the "right" way (i.e., keeping things ordered)
- OrderedVector?
 - Keep ordered vector of objects
 - O(n) to add/remove from vector
 - Details in book…
 - Can we do better than O(n)?
- Heap!
 - Partially ordered binary tree

Heap

- A heap is a special type of tree
- A heap is a tree where:
 - Root holds smallest (highest priority) value
 - Subtrees are also heaps (this is important!)
- So values increase in priority (decrease in value) from leaves to root (from descendant to ancestor)
- Invariant for nodes
 - node.value() >= node.parent.value()
 - Tree need not be binary....
- Several valid heaps for same data set (no unique representation)

Inserting into a PQ

- Add new value as a leaf
- "Percolate" it up the tree
 - while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a place to add new node
 - Finding parent
 - Tree height

Removing From a PQ

- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of **smallest** child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Determining child with smallest value
 - Height of tree

Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
 - Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2

Implementing Heaps

- Features
 - No gaps in array (array is complete)-- why?
 - We always add in next available array slot (left-most available spot in binary tree;
 - We always remove using "final" leaf
 - Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i] <= data[2i+2] (or kids might be null)
 - When elements are added and removed, do small amount of work to "re-heapify"
 - How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

• Let's look at VectorHeap code....

- Add/remove are both O(log n)
- Data is not completely sorted
 - "Partial" order is maintained
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How?

Heapifying A Vector (or array)

- Method I: Top-Down
 - Assume V[0...k] satisfies the heap property
 - Now call percolate on item in location k+1
 - Then V[0..k+1] satisfies the heap property
- Method II: Bottom-up
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-I
 - Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

 Top-down heapify: elements at depth d may be swapped d times: Total # of swaps is at most

$$\sum_{d=0}^{h} d2^{d} = (h-1)2^{h+1} + 2 = (\log n - 1)2n + 2$$

- This is O(n log n)
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: O(log n) swaps per element

Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped h-d times: Total # of swaps is at most $\sum_{d=0}^{h} (h-d)2^{d} = 2^{h+1} - h - 2 = 2n - \log n + 2$
 - This is O(n) --- beats top-down!
 - Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times
 SO COOL!!!

Some Sums

$$\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1$$

$$\sum_{d=0}^{d=k} r^d = \frac{(r^{k+1}-1)}{(r-1)}$$

$$\sum_{d=0}^{d=k} d * 2^d = (k-1) * 2^{k+1} + 2$$

$$\sum_{d=0}^{d=k} (k-d) * 2^d = 2^{k+1} - k - 2$$

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any r≠0

HeapSort

- Heaps yield another O(n log n) sort method
- To HeapSort a Vector "in place"
 - Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 - Now repeatedly remove elements to fill in Vector from tail to head
 - For(int i = v.size() I; i > 0; i--)
 - RemoveMin from v[0..i] // v[i] is now not in heap
 - Put removed value in location v[i]

Skew Heap

- What if heaps are not complete BTs?
- We can implement PQs using skew heaps instead of "regular" complete heaps
- Key differences:
 - Rather than use Vector as underlying data structure, use BT
 - Need a merge operation that merges two heaps together into one heap
- Details in book