CSCI 136
Data Structures &
Advanced Programming

Lecture 21

Fall 2019
Instructor: B&S

Last Time

* Traversing Binary Trees
* Lab 7: Two Towers

Today

* Array Representations of (Binary) Trees
* Application: Huffman Encoding
* Priority Queues & Heaps

A “somewhat-ordered” data structure
e Conceptual structure
e Efficient implementations

Array-Based Binary Trees

* Encode structure of tree in array indexes

 Put root at index 0

* Where are children of node i?
e Children of node i are at 2i+| and 2i+2
* Look at example

* Where is parent of node j!
* Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

* Why are ArrayTrees good?

e Save space for links
* No need for additional memory allocated/garbage
collected

* Works well for full or complete trees

e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad!?
e Could waste a lot of space

* Tree of height of n requires 2"*!-| array slots even if only
O(n) elements

Application: Huffman Codes
(a CS 256 Preview)

e Computers encode a text as a sequence of bits

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 INULL] 32 20 [SPACE] | 64 40 @ 96 60 .
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 a4 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2c 76 4C L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A z 122 Az
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50 1] 125 D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

Huffman Codes

Goal: Encode a text as a sequence of bits
Normally, use ASCII: | character = 8 bits (| byte)

e Allows for 28 = 256 different characters

‘A’ =01000001, ‘B° =01000010
Space to store “AN_ANTARCTIC_PENGUIN”
e 20 characters -> 20*8 bits = 160 bits

Is there a better way!?
 Only Il symbols are used (ANTRCIPEGU)

* Only need 4 bits per symbol (since 2*>11)!
e 20*4 = 80 bits instead of 160!

e Can we still do better??

Huffman Codes

 Example

e AN_ANTARCTIC_PENGUIN
e Compute letter frequencies

e Key ldea: Use fewer bits for most common letters

3 2 I I 2 4 I I 2 I 2
110 111 10l 1000 000 0OOI 1001 1010 OIOI OlIOCO Oll

e Uses 67 bits to encode entire string

Huffman Codes

3 2 I I 2 4 I I 2 I 2
110 111 10l 1000 000 0OI 1001 1010 OIOI OIOO Oll

e Uses 67 bits to encode entire string

e Can we do better?

3 2 I I 2 4 I I 2 I 2
100 010 1100 1101 oIl 10l 0001 0000 OOI II1O Il

e Uses 67 bits to encode entire string

The Encoding Tree

N:4

u:1l

A:3

C:2

0 1
=2 O O
1 0 1 0 1
T2 Gi| |p1| |rR1| |E1

Left = 0; Right = 1

Features of Good Encoding

Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

No internal node has a single child

Nodes with lower frequency have greater
depth

All optimal length unambiguous encodings
have these features

Huffman Encoding

* Input: symbols of alphabet with frequencies

e Huffman encode as follows

* Create a single-node tree for each symbol: key is
frequency; value is letter

* while there is more than one tree
* Find two trees T1 and T2 with lowest keys

* Merge them into new tree T with dummy value and
key= T|.key+ T2.key

* Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

N:4

u:1l

A:3

C:2

0 1
=2 O O
1 0 1 0 1
T2 Gi| |p1| |rR1| |E1

Left = 0; Right = 1

How To Implement Huffman

Keep a Vector of Binary Trees

Sort them by decreasing frequency

 Removing two smallest frequency trees is fast

Insert merged tree into correct sorted
location in Vector

Running Time:
* O(n log n) for initial sorting
* O(n?) for rest: O(n) re-insertions of merged trees

Can we do better...?

What Huffman Encoder Needs

A structure S to hold items with priorities

S should support operations
e add(E item); // add an item

* E removeMin(); // remove min priority item

S should be designed to make these two
operations fast

If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n?)!

We've seen this situation before....

Priority Queues

\ / »
I ——»
— —»
. @

Packet Sources May Be Ordered by Sender

sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10

spammer .com 100 (worst)

Priority Queues

* Priority queues are also used for:

e Scheduling processes in an operating system

* Priority is function of time lost + process priority

* Order services on server

e Backup is low priority, so don’t do when high priority tasks need
to happen

Scheduling future events in a simulation

Medical waiting room

Huffman codes - order by tree size/weight

A variety of graph/network algorithms

To roughly order choices that are generated out of order

Priority Queues

Name is misleading: They are not FIFO

Always dequeue object with highest
priority (smallest rank) regardless of when it
was enqueued

Data can be received/inserted in any order,
but it is always returned/removed according
to priority

Like ordered structures (i.e., OrderedVectors

and OrderedLists), PQs require comparisons
of values

An Apology

* On behalf of computer scientists everywhere,
I'd like to apologize for the confusion that
inevitably results from the fact that

Higher Priority Lower Rank

e The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’'re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

Notes on PQ Interface

* Unlike previous structures, we do not extend
any other interfaces

* Many reasons: For example, it’s not clear that
there’s an obvious iteration order

* PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values

e Could be made to use Comparators instead...

Implementing PQs

e Queue!

* Wouldn’t work so well because we can’t insert and
remove in the “right” way (i.e., keeping things ordered)

* OrderedVector!?
e Keep ordered vector of objects
e O(n) to add/remove from vector
e Details in book...
e Can we do better than O(n)?

* Heap!

* Partially ordered binary tree

Heap

A heap is a special type of tree

A heap is a tree where:

e Root holds smallest (highest priority) value

e Subtrees are also heaps (this is important!)

So values increase in priority (decrease in value)
from leaves to root (from descendant to ancestor)
Invariant for nodes

* node.value() >= node.parent.value()

* Tree need not be binary....

Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

Add new value as a leaf

“Percolate” it up the tree

e while (value < parent’s value) swap with parent
This operation preserves the heap property
since new value was the only one violating
heap property

Efficiency depends upon speed of

* Finding a place to add new node

* Finding parent

* Tree height

Removing From a PQ

Find a leaf, delete it, put its data in the root
“Push” data down through the tree

* while (data.value > value of (at least) one child)
e Swap data with data of smallest child

This operation preserves the heap property

Efficiency depends upon speed of

* Finding a leaf

 Finding locations of children

* Determining child with smallest value

* Height of tree

Implementing Heaps

* VectorHeap

e Use conceptual array representation of BT
(ArrayTree)

e But use extensible Vector instead of array (makes
adding elements easier)
* Note:

e Root of tree is location 0 of Vector

e Children of node in location i are in locations 2i+ |
(left) and 2i+2 (right)

e Parent of node i is in location (i-1)/2

Implementing Heaps

* Features
* No gaps in array (array is complete)-- why?
* We always add in next available array slot (left-most available spot
in binary tree;
* We always remove using “final” leaf

* Heap Invariant becomes
 data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

* When elements are added and removed, do small amount

of work to “re-heapify”

e How small? Note: finding a node’s child or parent takes constant
time, as does finding “final” leaf or next slot for adding

e Since this heap corresponds to a full binary tree, the depth of the
tree is O(log n), so percolate/pushDown takes O(log n) time!

VectorHeap Summary

Let’s look at VectorHeap code....

Add/remove are both O(log n)

Data is not completely sorted

e “Partial”’ order is maintained

Note: VectorHeap(Vector<k> v)

e Takes an unordered Vector and uses it to
construct a heap

e How!

Heapifying A Vector (or array)

 Method |: Top-Down
e Assume V[O0...k] satisfies the heap property
* Now call percolate on item in location k+1

* Then V[0..k+ 1] satisfies the heap property

* Method |l: Bottom-up
e Assume V[k..n] satisfies the heap property
* Now call pushDown on item in location k- |

* Then V[k-1..n] satisfies heap property

Top-Down vs Bottom-Up

* Top-down heapify: elements at depth d may be
swapped d times: Total # of swaps is at most

h
2 d2% = (h—1)2"*1 + 2 = (logn — 1)2n + 2
d=0
e This is O(n log n)
e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them

might have to move to root: O(log n) swaps
per element

Top-Down vs Bottom-Up

* Bottom-up heapify: elements at depth d may be
swapped h-d times: Total # of swaps is at most

h
Z (h—d)2¢ = 201 — h— 2 = 2n —logn + 2
d=0

* This is O(n) --- beats top-down!

e Some intuition: most of the elements are in
the lowest levels of the tree, so each of them
will only be pushed down (swapped) a small
number of times SO COOL!!

Some Sums

zd_kzd _ ok+1 _q All of these can be
d=0 proven by (weak)
induction.
S B
Edzor = =D/ =D Try these to hone
your skills

d=k
zd_ d*2% = (k—1)*2F1 42 The second sum is
=0 called a geometric
d=Kk series. It works for

2 (k—d)*2% = 2kt1 _ | — 2 any r#0
d=0

HeapSort

Heaps yield another O(n log n) sort method

To HeapSort a Vector “in place”

e Perform bottom-up heapify on the reverse
ordering: that is: highest rank/lowest priority
elements are near the root (low end of Vector)

* Now repeatedly remove elements to fill in Vector
from tail to head
e For(inti=v.size() — |;i>0;i--)
— RemoveMin from v[O0..i] // v[i] is now not in heap

— Put removed value in location v[i]

Skew Heap

* What if heaps are not complete BTs!?

* We can implement PQs using skew heaps
instead of “regular” complete heaps

» Key differences:

e Rather than use Vector as underlying data
structure, use BT

* Need a merge operation that merges two heaps
together into one heap

e Details in book

