
CSCI 136
Data Structures &

Advanced Programming

Lecture 20
Fall 2019

Instructor: Bill & Sam

Administrative Details

• Lab 7 is available online
• No partners this week
• Review before lab; come to lab with design doc

• We’ll give an overview (possibly on Wednesday)

2

Last Time

• Recursion/Induction on Trees
• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees

3

Today

• Traversing Binary Trees
• Big Trees
• Lab 7 Discussion
• Storing Trees in Arrays

4

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Lucas

NambiJacob

KelsieAria

Tree Traversals

Tongyu

Tree Traversals
• Pre-order
• Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)
• +*237

• In-order
• Each node is visited after all nodes in left subtree

are visited and before any nodes in right subtree.
(left, node, right)
• 2*3+7

+

7*

32

(“pseudocode”)

Tree Traversals

• Post-order
• Each node is visited after its children are visited.

Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)
• 23*7+

• Level-order (not obviously recursive!)
• All nodes of level i are visited before nodes of

level i+1. (visit nodes left to right on each level)
• +*723

+

7*

32

(“pseudocode”)

Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

}

For in-order and post-order: just move touch(t)!

But what about level-order???

+

7*

32

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Green

todo queue

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Blue

todo queue

Violet

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B

Violet

todo queue

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Orange

todo queue

Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo queue

Indigo

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y

Indigo

todo queue

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I

todo queue

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R

todo queue

Level-Order Tree Traversal
public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
q.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = q.dequeue();
touch(next);
if(!next.left().isEmpty()) q.enqueue(next.left());
if(!next.right().isEmpty()) q.enqueue(next.right());

}
}

Iterators

• Provide iterators that implement the different
tree traversal algorithms

• Methods provided by BinaryTree class:
• preorderIterator()
• inorderIterator()
• postorderIterator()
• levelorderIterator()

Implementing the Iterators

• Basic idea
• Should return elements in same order as

corresponding traversal method shown
• Recursive methods don’t convert as easily: must

phrase in terms of next() and hasNext()

• So, let’s start with levelOrder!

Level-Order Iterator

public BTLevelorderIterator(BinaryTree<E> root)
{

todo = new QueueList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}

public void reset()
{

todo.clear();
// empty queue, add root
if (!root.isEmpty()) todo.enqueue(root);

}

Level-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
if (!current.left().isEmpty())

todo.enqueue(current.left());
if (!current.right().isEmpty())

todo.enqueue(current.right());
return result;

}

Pre-Order Iterator

• Basic idea
• Should return elements in same order as

processed by pre-order traversal method
• Must phrase in terms of next() and hasNext()
• We “simulate recursion” with stack

• The stack holds “partially processed” nodes

Pre-Order Iterator

• Outline: node - left tree – right tree
1. Constructor: Push root onto todo stack
2. On call to next():

• Pop node from stack
• Push right and then left nodes of popped node onto

stack

• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G

Violet

todo stack

Blue

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow

G B

Green

Violet

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Yellow

todo stack

Orange

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo stack

Red

Indigo

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I

Yellow

todo stack

Red

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R

Yellow

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R Y

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

public BTPreorderIterator(BinaryTree<E> root)
{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset()
{

todo.clear(); // stack is empty; push on root
if ((!root.isEmpty()) todo.push(root);

}

Pre-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (!old.right().isEmpty())
todo.push(old.right());

if (!old.left().isEmpty())
todo.push(old.left());

return result;
}

Tree Traversal Practice Problems

• Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

• Prove that levelOrder() takes O(n) time,
where n is the size of the tree

• Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Blue

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B

Green

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G

Violet

todo stack

Orange

Indigo

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I

Violet

todo stack

Orange

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O

Violet

todo stack

Red

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R

Violet

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V

Yellow

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V Y

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

• Outline: left - node - right
1. Push left children (as far as possible) onto stack

2. On call to next():
• Pop node from stack

• Push right child and follow left children as far as possible
• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()

In summary:

• In-order: “left, node, right”

• Pre-order: “node, left, right”

• Post-order: “left, right, node”

• Level-order: visit all nodes at depth i before
depth i+1

Tree Traversals

Stack

Queue

Traversals & Searching

• We can use traversals for searching trees
• How might we search a tree for a value?
• Breadth-First: Explore nodes near the root before

nodes far away (level order traversal)
• Nearest gas station

• Depth-First: Explore nodes deep in the tree first
(post-order traversal)
• Solution to a maze

Loose Ends – Really Big Trees!

• In some situations, the tree we need might be
too big or expensive to build completely
• Or parts of it might not be needed

• Example: Game Trees
• Chess: you wouldn’t build the entire tree, you

would grow portions of it as needed (with some
combination of depth/breadth first searching)

Lab 7: Representing Numbers

• Humans usually think of numbers in base 10
• But even though we write int x = 23; the

computer stores x as a sequence of 1s and 0s

• Recall Lab 3:

• 00000000 00000000 00000000 00010111

public static String printInBinary(int n) {
if (n <= 1)

return "" + n%2;

return printInBinary(n/2)+n%2;
}

Bitwise Operations

• We can use bitwise operations to manipulate
the 1s and 0s in the binary representation
• Bitwise ‘and’: &
• Bitwise ‘or’: |

• Also useful: bit shifts
• Bit shift left: <<
• Bit shift right: >>

& and |

• Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in EITHER a OR b (or both)
• 3 | 6 = ?

• Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in BOTH a AND b
• 3 & 6 = ?

>> and <<
• Given two (small) integers a and i,

(a << i) returns (a * 2i)
• Why? It shifts all bits left by i positions
• 1 << 4 = ?

• Given two positive integers a and i,
(a >> i) returns (a / 2i)
• Why? It shifts all bits right by i positions
• 1 >> 4 = ?
• 97 >> 3 = ? (97 = 1100001)

• Be careful about shifting left and “overflow”!!!

Revisiting printInBinary(int n)

• How would we rewrite a recursive
printInBinary using bit shifts and bitwise
operations?

public static String printInBinary(int n) {
if (n <= 1) {

return "" + n;
return printInBinary(n >> 1) + (n & 1);

}

Revisiting printInBinary(int n)

• How would we write an iterative
printInBinary using bit shifts and bitwise
operations?

public static String printInBinary(int n,
int width) {

String result = "";
for(int i = 0; i < width; i++)

if ((n & (1<<i)) == 0)
result = 0 + result;

else
result = 1 + result;

return result;
}

Lab 7: Two Towers

• Goal: given a set of blocks, iterate through all
possible subsets to find the best set

• “Best” set produces the most balanced towers
• Strategy: create an iterator that uses the bits

in a binary number to represent subsets

1 2 3 4 14 15
. . .

Lab 7: Two Towers

• A block can either be in the set or out
• If bit is a 1, in. If bit is a 0, out

1 2 3 4 14 15
. . .

0 1 1 0 1 0
1

2

3
4

14 15

Questions?

• We will write a “SubsetIterator” to
enumerate all possible subsets of a Vector<E>

• We will use SubsetIterator to solve this
problem

• Can also be used to solve other problems
• Identify all Subsequences of a String that are

words
• You just need a dictionary of legal words

• Coming soon!

Alternative Tree Representations

• Total # “slots” = 4n
• Since each BinaryTree

maintains a reference to
left, right, parent, value

• 2-4x more overhead than
vector, SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don’t…

Green

Blue Violet

Indigo Red

Orange Yellow

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only

O(n) elements

Application: Huffman Codes
(a CS 256 Preview)

• Computers encode a text as a sequence of bits

Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• ‘A’ = 01000001, ‘B’ = 01000010
• Space to store “AN_ANTARCTIC_PENGUIN”

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

Features of Good Encoding

• Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater

depth

• All optimal length unambiguous encodings
have these features

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?

What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n2)!

• We’ve seen this situation before….

Priority Queues

Packet Sources May Be Ordered by Sender
sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10
spammer.com 100 (worst)

Lookup

Priority Queues

• Priority queues are also used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight

• A variety of graph/network algorithms
• To roughly order choices that are generated out of order

Priority Queues

• Name is misleading: They are not FIFO
• Always dequeue object with highest

priority (smallest rank) regardless of when it
was enqueued

• Data can be received/inserted in any order,
but it is always returned/removed according
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons
of values

An Apology

• On behalf of computer scientists everywhere,
I’d like to apologize for the confusion that
inevitably results from the fact that

Higher Priority Lower Rank

• The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

• Unlike previous structures, we do not extend
any other interfaces
• Many reasons: For example, it’s not clear that

there’s an obvious iteration order

• PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values
• Could be made to use Comparators instead…

Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap!
• Partially ordered binary tree

Heap

• A heap is a special type of tree
• A heap is a tree where:

• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is important!)

• So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

• Invariant for nodes
• node.value() >= node.parent.value()

• Tree need not be binary….

• Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property
since new value was the only one violating
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Tree height

Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while (data.value > value of (at least) one child)

• Swap data with data of smaller child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree

