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Administrative Details

• Lab 7 is available online
• No partners this week
• Review before lab; come to lab with design doc

• We’ll give an overview (possibly on Wednesday)
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Last Time

• Recursion/Induction on Trees
• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees
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Today

• Traversing Binary Trees
• Big Trees
• Lab 7 Discussion
• Storing Trees in Arrays
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In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Lucas

NambiJacob

KelsieAria

Tree Traversals

Tongyu



Tree Traversals
• Pre-order
• Each node is visited before any children. Visit 

node, then each node in left subtree, then each 
node in right subtree. (node, left, right)
• +*237

• In-order
• Each node is visited after all nodes in left subtree 

are visited and before any nodes in right subtree. 
(left, node, right)
• 2*3+7

+

7*

32

(“pseudocode”)



Tree Traversals

• Post-order
• Each node is visited after its children are visited. 

Visit all nodes in left subtree, then all nodes in 
right subtree, then node itself. (left, right, node)
• 23*7+

• Level-order (not obviously recursive!)
• All nodes of level i are visited before nodes of 

level i+1. (visit nodes left to right on each level)  
• +*723

+

7*

32

(“pseudocode”)



Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

}

For in-order and post-order: just move touch(t)!

But what about level-order???

+

7*

32
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Level-Order Tree Traversal
public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
q.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = q.dequeue();
touch(next);
if(!next.left().isEmpty()  ) q.enqueue( next.left()  );
if(!next.right().isEmpty() ) q.enqueue( next.right() );

}
}



Iterators

• Provide iterators that implement the different 
tree traversal algorithms

• Methods provided by BinaryTree class:
• preorderIterator()
• inorderIterator()
• postorderIterator()
• levelorderIterator()



Implementing the Iterators

• Basic idea
• Should return elements in same order as 

corresponding traversal method shown
• Recursive methods don’t convert as easily: must 

phrase in terms of next() and hasNext()

• So, let’s start with levelOrder!



Level-Order Iterator

public BTLevelorderIterator(BinaryTree<E> root)
{

todo = new QueueList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}   

public void reset()
{

todo.clear();
// empty queue, add root
if (!root.isEmpty()) todo.enqueue(root);

}



Level-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
if (!current.left().isEmpty())

todo.enqueue(current.left());
if (!current.right().isEmpty())

todo.enqueue(current.right());
return result;

}



Pre-Order Iterator

• Basic idea
• Should return elements in same order as 

processed by pre-order traversal method
• Must phrase in terms of next() and hasNext()
• We “simulate recursion” with stack

• The stack holds “partially processed” nodes



Pre-Order Iterator

• Outline: node - left tree – right tree
1. Constructor: Push root onto todo stack
2. On call to next():

• Pop node from stack
• Push right and then left nodes of popped node onto 

stack

• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()
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Pre-Order Iterator

public BTPreorderIterator(BinaryTree<E> root)
{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}   

public void reset()
{

todo.clear(); // stack is empty; push on root
if ((!root.isEmpty()) todo.push(root);

}



Pre-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (!old.right().isEmpty()) 
todo.push(old.right());

if (!old.left().isEmpty()) 
todo.push(old.left());

return result;
}



Tree Traversal Practice Problems

• Prove that levelOrder() is correct: that is, that 
it touches the nodes of the tree in the correct 
order (Hint: induction by level)

• Prove that levelOrder() takes O(n) time, 
where n is the size of the tree

• Prove that the PreOrder (LevelOrder) 
Iterator visits the nodes in the same order as 
the PreOrder (LevelOrder) traversal method
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In-Order Iterator

• Outline: left - node - right
1. Push left children (as far as possible) onto stack

2. On call to next():
• Pop node from stack

• Push right child and follow left children as far as possible
• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()



In summary:

• In-order: “left, node, right”

• Pre-order: “node, left, right”

• Post-order: “left, right, node”

• Level-order: visit all nodes at depth i before 
depth i+1

Tree Traversals

Stack

Queue



Traversals & Searching

• We can use traversals for searching trees
• How might we search a tree for a value?
• Breadth-First: Explore nodes near the root before 

nodes far away (level order traversal)
• Nearest gas station

• Depth-First: Explore nodes deep in the tree first 
(post-order traversal)
• Solution to a maze



Loose Ends – Really Big Trees!

• In some situations, the tree we need might be 
too big or expensive to build completely
• Or parts of it might not be needed

• Example: Game Trees
• Chess: you wouldn’t build the entire tree, you 

would grow portions of it as needed (with some 
combination of depth/breadth first searching)



Lab 7: Representing Numbers

• Humans usually think of numbers in base 10
• But even though we write int x = 23; the 

computer stores x as a sequence of 1s and 0s

• Recall Lab 3:

• 00000000 00000000 00000000 00010111

public static String printInBinary(int n) {
if (n <= 1)

return "" + n%2;

return printInBinary(n/2)+n%2;
}



Bitwise Operations

• We can use bitwise operations to manipulate 
the 1s and 0s in the binary representation
• Bitwise ‘and’:  &
• Bitwise ‘or’:  |

• Also useful: bit shifts
• Bit shift left:  <<
• Bit shift right:  >>



& and |

• Given two integers a and b, the bitwise or
expression  a | b returns an integer s.t.
• At each bit position, the result has a 1 if that bit 

position had a 1 in EITHER a OR b (or both)
• 3 | 6 = ?

• Given two integers a and b, the bitwise and
expression  a & b returns an integer s.t.
• At each bit position, the result has a 1 if that bit 

position had a 1 in BOTH a AND b
• 3 & 6 = ?



>> and <<
• Given two (small) integers a and i, 

(a << i) returns  (a * 2i)
• Why? It shifts all bits left by i positions
• 1 << 4 = ?

• Given two positive integers a and i, 
(a >> i) returns  (a / 2i)
• Why? It shifts all bits right by i positions
• 1 >> 4 = ?
• 97 >> 3 = ?   (97 = 1100001)

• Be careful about shifting left and “overflow”!!!



Revisiting printInBinary(int n)

• How would we rewrite a recursive 
printInBinary using bit shifts and bitwise 
operations?

public static String printInBinary(int n) {
if (n <= 1) {

return "" + n;
return printInBinary(n >> 1) + (n & 1);

}



Revisiting printInBinary(int n)

• How would we write an iterative 
printInBinary using bit shifts and bitwise 
operations?

public static String printInBinary(int n,
int width) {

String result = "";
for(int i = 0; i < width; i++)

if ((n & (1<<i)) == 0)
result = 0 + result;

else
result = 1 + result;

return result;
}



Lab 7: Two Towers

• Goal: given a set of blocks, iterate through all 
possible subsets to find the best set

• “Best” set produces the most balanced towers
• Strategy: create an iterator that uses the bits 

in a binary number to represent subsets

1 2 3 4 14 15
. . .



Lab 7: Two Towers

• A block can either be in the set or out
• If bit is a 1, in. If bit is a 0, out

1 2 3 4 14 15
. . .

0 1 1 0 1 0
1

2

3
4

14 15



Questions?

• We will write a “SubsetIterator” to 
enumerate all possible subsets of a Vector<E>

• We will use SubsetIterator to solve this 
problem

• Can also be used to solve other problems
• Identify all Subsequences of a String that are 

words
• You just need a dictionary of legal words

• Coming soon!



Alternative Tree Representations

• Total # “slots” = 4n 
• Since each BinaryTree

maintains a reference to 
left, right, parent, value

• 2-4x more overhead than 
vector, SLL, array, …

• But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 

Green

Blue Violet

Indigo Red

Orange Yellow



Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage 

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or 

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only 

O(n) elements



Application: Huffman Codes
(a CS 256 Preview)

• Computers encode a text as a sequence of bits



Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• ‘A’ = 01000001, ‘B’ = 01000010
• Space to store “AN_ANTARCTIC_PENGUIN”

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??



Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011



Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?



The Encoding Tree
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Features of Good Encoding

• Prefix property: No encoding is a prefix of 
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater 

depth

• All optimal length unambiguous encodings 
have these features



Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is 

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and 

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is 
an optimal encoding for given frequencies



The Encoding Tree
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How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted 
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?



What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin();  // remove min priority item

• S should be designed to make these two 
operations fast

• If, say, they both ran in O(log n) time, the 
Huffman algorithm would take O(n log n) time 
instead of O(n2)!

• We’ve seen this situation before….



Priority Queues

Packet Sources May Be Ordered by Sender
sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10
spammer.com 100 (worst)

Lookup



Priority Queues

• Priority queues are also used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need 

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight

• A variety of graph/network algorithms
• To roughly order choices that are generated out of order



Priority Queues

• Name is misleading: They are not FIFO
• Always dequeue object with highest 

priority (smallest rank) regardless of when it 
was enqueued

• Data can be received/inserted in any order, 
but it is always returned/removed according 
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons 
of values



An Apology

• On behalf of computer scientists everywhere, 
I’d like to apologize for the confusion that 
inevitably results from the fact that

Higher Priority Lower Rank

• The PQ removes the lowest ranked value in an 
ordering: that is, the highest priority value!

We’re sorry!



PQ Interface

public interface PriorityQueue<E extends Comparable<E>> { 
public E getFirst(); // peeks at minimum element
public E remove();   // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty(); 
public int size(); 
public void clear();

} 



Notes on PQ Interface

• Unlike previous structures, we do not extend 
any other interfaces
• Many reasons: For example, it’s not clear that 

there’s an obvious iteration order

• PriorityQueue uses Comparables: methods 
consume Comparable parameters and return 
Comparable values
• Could be made to use Comparators instead…



Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and 

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap!
• Partially ordered binary tree



Heap

• A heap is a special type of tree
• A heap is a tree where:

• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is important!)

• So values increase in priority (decrease in rank) from 
leaves to root (from descendant to ancestor)

• Invariant for nodes
• node.value() >= node.parent.value()

• Tree need not be binary….

• Several valid heaps for same data set (no unique 
representation) 



Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property 
since new value was the only one violating 
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Tree height



Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while ( data.value > value of (at least) one child )

• Swap data with data of smaller child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree


