
CSCI 136
Data Structures &

Advanced Programming

Lecture 20
Fall 2019

Instructor: B&S

Administrative Details

• Lab 7 is available online
• No partners this week
• Review before lab; come to lab with design doc

• We’ll give an overview shortly

2

Last Time

• Recursion/Induction on Trees
• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees
• As methods taking a BinaryTree parameter

3

Today

• Binary Trees Traversals
• With Iterators

• Big Trees
• Lab 7 Discussion
• Storing Trees in Arrays

4

In-Order Iterator
public BTInorderIterator(BinaryTree<E> root) {

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}
public void reset()

{
todo.clear();
// stack is empty. Push on nodes from root along
// longest “left-only” path
BinaryTree<E> current = root;
while (!current.isEmpty()) {

todo.push(current);
current = current.left();

}
}

In-Order Iterator
public E next() {

BinaryTree<E> old = todo.pop();
E result = old.value();
// we know this node has no unvisited left children;
// if this node has a right child,
// we push right child and longest “left-only” path
// else
// top element of stack is next node to be visited
if (!old.right().isEmpty()) {

BinaryTree<E> current = old.right();
do {

todo.push(current);
current = current.left();

} while (!current.isEmpty());
}
return result;

}

Post-Order Iterator
public BTPostorderIterator(BinaryTree<E> root) {

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}
public void reset() {

todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {

todo.push(current);
if (!current.left().isEmpty())

current = current.left();
else

current = current.right();
} // Top of stack is now left-most unvisited leaf

}

Post-Order Iterator
public E next() {

BinaryTree<E> current = todo.pop();
E result = current.value();
if (!todo.isEmpty()) {

BinaryTree<E> parent = todo.get();
if (current == parent.left()) {

current = parent.right();
while (!current.isEmpty()) {

todo.push(current);
if (!current.left().isEmpty())

current = current.left();
else current = current.right();

}
}

}
return result;

}

In summary:

• In-order: “left, node, right”

• Pre-order: “node, left, right”

• Post-order: “left, right, node”

• Level-order: visit all nodes at depth i before
depth i+1

Tree Traversals

Stack

Queue

Traversals & Searching

• We can use traversals for searching trees
• How might we search a tree for a value?
• Breadth-First: Explore nodes near the root before

nodes far away (level order traversal)
• Nearest gas station

• Depth-First: Search until leaves are reached
• (post-order traversal; but halt when solution found)

• Solution to a maze

Loose Ends – Really Big Trees!

• In some situations, the tree we need might be
too big or expensive to build completely
• Or parts of it might not be needed

• Example: Game Trees
• Chess: you wouldn’t build the entire tree, you

would grow portions of it as needed (with some
combination of depth/breadth first searching)

Lab 7: Representing Numbers

• Humans usually think of numbers in base 10
• But even though we write int x = 23; the

computer stores x as a sequence of 1s and 0s

• Recall Lab 3:

• 00000000 00000000 00000000 00010111

public static String printInBinary(int n) {
if (n <= 1)

return "" + n%2;

return printInBinary(n/2)+n%2;
}

Bitwise Operations

• We can use bitwise operations to manipulate
the 1s and 0s in the binary representation
• Bitwise ‘and’: &
• Bitwise ‘or’: |

• Also useful: bit shifts
• Bit shift left: <<
• Bit shift right: >>

& and |

• Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in EITHER a OR b (or both)
• 3 | 6 = ?

• Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in BOTH a AND b
• 3 & 6 = ?

>> and <<
• Given two integers a and i, the expression

(a << i) returns (a * 2i)
• Why? It shifts all bits left by i positions
• 1 << 4 = ?

• Given two integers a and i, the expression
(a >> i) returns (a / 2i)
• Why? It shifts all bits right by i positions
• 1 >> 4 = ?
• 97 >> 3 = ? (97 = 1100001)

• Be careful about shifting left and “overflow”!!!

Revisiting printInBinary(int n)

• How would we rewrite a recursive
printInBinary using bit shifts and bitwise
operations?

public static String printInBinary(int n) {
if (n <= 1) {

return "" + n;
return printInBinary(n >> 1) + (n & 1);

}

Revisiting printInBinary(int n)

• How would we write an iterative
printInBinary using bit shifts and bitwise
operations?

public static String printInBinary(int n,
int width) {

String result = "";
for(int i = 0; i < width; i++)

if ((n & (1<<i)) == 0)
result = 0 + result;

else
result = 1 + result;

return result;
}

Lab 7: Two Towers

• Goal: given a set of blocks, iterate through all
possible subsets to find the best set

• “Best” set produces the most balanced towers
• Strategy: create an iterator that uses the bits

in a binary number to represent subsets

1 2 3 4 14 15
. . .

Lab 7: Two Towers

• A block can either be in the set or out
• If bit is a 1, in. If bit is a 0, out

1 2 3 4 14 15
. . .

0 1 1 0 1 0
1

2

3
4

14 15

Questions?

• We will write a “SubsetIterator” to
enumerate all possible subsets of a Vector<E>

• We will use SubsetIterator to solve this
problem

• Can also be used to solve other problems
• Identify all Subsequences of a String that are

words
• You just need a dictionary of legal words

• Coming soon!

Alternative Tree Representations

• Total # “slots” = 4n
• Since each BinaryTree

maintains a reference to
left, right, parent, value

• 2-4x more overhead than
vector, SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don’t…

Green

Blue Violet

Indigo Red

Orange Yellow

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only

O(n) elements

Application: Huffman Codes
(a CS 256 Preview)

• Computers encode a text as a sequence of bits

Huffman Codes

• Goal: Encode a text as a sequence of bits
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• ‘A’ = 01000001, ‘B’ = 01000010
• Space to store “AN_ANTARCTIC_PENGUIN”

• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ANTRCIPEGU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

• Can we still do better??

Huffman Codes

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Huffman Codes

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

Features of Good Encoding

• Prefix property: No encoding is a prefix of
another encoding (letters appear at leaves)

• No internal node has a single child
• Nodes with lower frequency have greater

depth

• All optimal length unambiguous encodings
have these features

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with dummy value and

key= T1.key+ T2.key

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?

What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n2)!

• We’ve seen this situation before….

Priority Queues

Packet Sources May Be Ordered by Sender
sysnet.cs.williams.edu priority = 1 (best)
bull.cs.williams.edu 2
yahoo.com 10
spammer.com 100 (worst)

Lookup

Priority Queues

• Priority queues are also used for:
• Scheduling processes in an operating system

• Priority is function of time lost + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight

• A variety of graph/network algorithms
• To roughly order choices that are generated out of order

Priority Queues

• Name is misleading: They are not FIFO
• Always dequeue object with highest

priority (smallest rank) regardless of when it
was enqueued

• Data can be received/inserted in any order,
but it is always returned/removed according
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons
of values

An Apology

• On behalf of computer scientists everywhere,
I’d like to apologize for the confusion that
inevitably results from the fact that

Higher Priority Lower Rank

• The PQ removes the lowest ranked value in an
ordering: that is, the highest priority value!

We’re sorry!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

• Unlike previous structures, we do not extend
any other interfaces
• Many reasons: For example, it’s not clear that

there’s an obvious iteration order

• PriorityQueue uses Comparables: methods
consume Comparable parameters and return
Comparable values
• Could be made to use Comparators instead…

Implementing PQs

• Queue?
• Wouldn’t work so well because we can’t insert and

remove in the “right” way (i.e., keeping things ordered)

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Heap!
• Partially ordered binary tree

Heap

• A heap is a special type of tree
• A heap is a tree where:

• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is important!)

• So values increase in priority (decrease in rank) from
leaves to root (from descendant to ancestor)

• Invariant for nodes
• node.value() >= node.parent.value()

• Tree need not be binary….

• Several valid heaps for same data set (no unique
representation)

Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property
since new value was the only one violating
heap property

• Efficiency depends upon speed of
• Finding a place to add new node

• Finding parent
• Tree height

Removing From a PQ

• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while (data.value > value of (at least) one child)

• Swap data with data of smaller child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree

