CSCI 136
Data Structures &
Advanced Programming

Fall 2019

Instructors
Bill Lenhart & Samuel McCauley

Administrative Details

e Lab | handout is

* Pre-lab Tasks (see Lab | handout)

e Pre-Lab Step 0: Complete it by 4 pm today
* Pre-Lab Steps |-2: : Complete it before lab

* TA hours start tonight

e See TA hour schedule on course website

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Last Time

Basic Java elements so far
* Primitive and array types
* Variable declaration and assignment

e Some control structures

e for, for-each, while, do-while
Some basic unix commands

* Compile (javac), run (java) cycle

Today

Further examples : The Game of Nim
Operators & operator precedence
Expressions

Control structures
* Branching: if — else, switch, break, continue
* Looping: while, do — while, for, for — each

Discussion:; Lab |

Coding Example : Nim

1 2 3 1 2 3 1 2 3

A takes 2 from 1 B takes 3 from 3 A takes 1 from 2

1 2 3 1 2 3 1 2 3

B takes 1 from 2 A takes heap 1 B takes 1 from 2

1 2 3 1 2 3 1 |2 _ 3

A takes 1 from 3 B takes heap 2 D agt comn
and wins

Courtesy geeksforgeeks.org

Nim
o A 2-player (or multi-

player) game lll -ll !'!!

e Materials: Piles of coins

« A turn: Take one or =il -EE HE
more coins from a pile Besifon? Aweshespt Biakes 1 fom2
: m H B .
* Winner: Player who T L T TS
takes final coin(s)

Courtesy geeksforgeeks.org

Design Doc : No-Objects Nim

State

* Array : holds pile sizes

* Number non-empty piles (or remaining coins)
Functionality

* Create the piles

* Display the piles

* Game over check

e Take a turn

Design Doc : No-Objects Nim

Functionality

* Create the piles

* Allocate array; choose random pile sizes
* Display the piles

e Each pile will be a row of O’s

e Game over check

* |s number of non-empty piles > 0?

e Take a turn
e Check that move is legal
e Update board

Pseudo-Code: No-Objects Nim

Nim(number of piles)

createBoard(number of piles)
displayBoard()

while not gameOver()
takeATurn()

displayBoard()

print("Game over!")

Main Method: No-Objects Nim

public static void main(String[] args) {

if (args.length == 0) {
System.out.println(
"Usage: java Nim <number of piles>");

System.exit(0); // Stop program

}
createBoard(Integer.valueOf (args[0]));
displayBoard();
while (! gameOver()) {

takeATurn();

displayBoard();
}

System.out.println("Game over!");

Data Declaration : No-Objects Nim

private static int[] board

private static int piles

private static int pilesLeft;
private static int minPileSize = 3;
private static int maxPileSize = 8;

private static Random rng = new Random();

private static Scanner in new Scanner (System.in);

Create Board : No-Objects Nim

public static void createBoard(int size) {

// Create the board
piles = size;

board = new int[piles];

// Fill the board with randomly sized piles
for(int 1i=0; i< board.length; i++)
board[i] = minPileSize +
rng.nextInt (maxPileSize - minPileSize + 1);

// Every pile is non-empty
pilesLeft = piles;

Display Board : No-Objects Nim
public static void displayBoard() {

for(int i = 0; i < board.length; i++) {
System.out.print(i + ":");

// Display a pile
for(int j=0; J < board[i]; J++)
System.out.print(" 0");

// Start a new output line
System.out.println();

Take a Turn: No-Objects Nim

public static void takeATurn() {
System.out.print("Enter input"); // Bad prompt!
int pile = in.nextInt(); // Using Scanner object
int num = in.nextInt();

while (pile >= board.length || board[pile] == 0 ||
board[pile] < num) {

System.out.print("Enter input");
pile = in.nextInt();
num = in.nextInt();

board[pile] -= num;
if (board[pile] == 0) pilesLeft--;

Notes: No-Objects Nim

Because we don’t create Nim objects

e All data elements are static
e Don’t belong to a given object of type Nim

e All methods are static
e Do not work on a given object of type Nim

But objects are used
e rng is an object of type Random
e in iIs an object of type Scanner

We need to tell Java where they are
import java.util.Random;

import java.util.Scanner;

Note: piles isn’t needed: use board.length!

Operators

Java provides a number of built-in operators
including

* Arithmetic operators: +, -, *, /, %

* Relational operators: ==, =, <, Sg >¢ 2

* Logical operators &&, || (don’t use &, |)

e Assignment operators =, +=, -=, *= [=
Common unary operators include

e Arithmetic: - (prefix); ++, -- (prefix and postfix)
e Logical: ! (not)

Operator Precedence in Java

Operators Precedence
postfix expr++ expr--
unary ++expr --expr +expr -expr ~ !
multiplicative */ %
additive + -
shift << >> >>>
relational < > <= >= 1instanceof
equality == =
bitwise AND &
bitwise exclusive OR | A
bitwise inclusive OR | |
logical AND &&
logical OR [
ternary ?
assignment = += -= ¥= /= %= &= A= |= <<= >>= >>>=

Operator Gotchas!

There is no exponentiation operator in Java.

* The symbol # is the bitwise or operator in Java.

The remainder operator % is the same as the
mathematical 'mod' function for positive arguments,

* For negative arguments it is not: -8 7% 3 = -2

The logical operators && and || use short-circuit
evaluation:

e Once the value of the logical expression can be
determined, no further evaluation takes place.

e Eg:lfnis0,then (n != 0) && (k/n > 3), will
yield false without evaluating k/n. Very useful!

Expressions

Expressions are either:
e literals, variables, invocations of non-void methods, or

* statements formed by applying operators to them

An expression returns a value
e 3+2*5 - 7/4 // returns 12
* X + y*z — g/w
e (- b + Math.sqgrt(b*b — 4 * a * c))/(2*
a)
e (n>0) & (k / n > 2) // computes a
boolean

Expressions

Assignment operator also forms an expression
e x = 3; // assigns x the value 3 and returns 3
e Soy=4*(x=3)setsx=3andy = 12 (and
returns |2)

Boolean expressions let us control program flow of
execution when combined with control structures
Example

— if ((x < 5) && (y !=0)) {...}
— while (! loggedIn) { ... }

20

Control Structures

Select next statement to execute based on value
of a boolean expression. Two flavors:

* Looping structures: while, do/while, for

e Repeatedly execute same statement (block)

* Branching structures: if, if/else, switch
* Select one of several possible statements (blocks)

 Special: break/continue: exit a looping structure

* break: exits loop completely

* continue: proceeds to next iteration of loop
21

while & do-while

Consider this code to flip coin until heads up...

Random rng = new Random();

int flip = rng.nextInt(2), count = 0;
while (flip == 0) { // count flips until “heads”

count++;
flip = rng.nextInt(2);

}
...and compare it to this
int flip, count = 0;

do {
count++;

flip = rng.nextInt(2);
} while (flip == 0) ;

// count flips until “heads”

22

For & for-each

Here’s a typical for loop example
int[] grades = { 100, 78, 92, 87, 8
int sum = 0;
for(int i = 0; 1 < grades.length;
sum += grades[i];

This for construct is equivalent to
int 1 = 0;
while (1 < grades.length) {
sum += grades[i];
i++;
}

Can also write
for (int g : grades) sum += g;
// called for-each construct

9, 90 };

i++)

23

Loop Construct Notes

The body of a while loop may not ever be executed

The body of a do — while loop always executes at
least once

For loops are typically used when number of
iterations desired is known in advance. E.g.
e Execute loop exactly 100 times

e Execute loop for each element of an array

The for-each construct is often used to access
array (and other collection type) values when no
updating of the array is required

* We'll explore this construct more later in the course
24

If/else

if (x > 0) // There is exactly 1 "if" clause
y =1/ x;

else if (x<0) { // 0 or more "else if" clauses
X = - X;
y =1/ x;

}

else // at most 1 "else" clause

System.out.println(“Can’t divide by 0!");

The single statement can be replaced by a block: any
sequence of statements enclosed in {}

25

switch

Example: Encode clubs, diamonds, hearts, spades as O, |, 2, 3
int x = myCard.getSuit(); // a fictional method
switch (x) {
case 1l: case 2:
System.out.println("Your card is red");
break;
case 0: case 3:
System.out.println("Your card is black");
break;
default:
System.out.println("Illegal suit code!");
break;

26

Break & Continue

Suppose we have a method isprime to test primality
Find first prime > 100

for(int i = 101; ; i++)
if (isPrime(i)) {
System.out.println(1);
break;

}

Print primes < 100
for(int i = 1; i < 100 ; i++) {
if (!isPrime(1i))
continue;

System.out.println(1);

27

Lab |

* Purpose
* Exercise your Java skills by programming a game

e |Learn some new tools

e Terminal command-line interface to Unix
e Atom program editor

* GitHub version control system

* Learn some code development habits

* Design documents

e Pseudo-code

28

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Lab |

e GitHub

e Cloud support for file storage with version control

e Basic commands
e git clone — make a local copy of an existing repository
e git add — add files to local copy of repository
e git rm — remove a file from local copy
* git commit — commit staged changes

* git push — update master repository with committed
changes in local repository

e git pull — update local repository from master

29

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Lab |

e CoinStrip Game
e Two-player coin-moving game (let’s play!)
* Essentials

* Decide on game representation
* Build the board

— Random coin locations
e Allow players to take turns

— Enter, check, process a move

e Congratulate the winner!

30

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Summary

Java

* Writing "no-objects” code: Nim

More on conditional control flow

e Switch, break, continue

Using classes from external packages
 Random, Scanner

* Import statement

Use of static for non-object-based data and
methods

Lab | overview

31

Lecture Ends Here

32

