CSCI 136
Data Structures &
Advanced Programming

Lecture 19
Fall 2019

Instructor: Bill & Sam

Administration

e CS prereg info session today 2:35 Wege (TCL
123)

Last Time

e Trees

* Vocabulary ®

* Expression Trees
* Recursive evaluation

* Implementation

Today

Implementation (finish)
Recursion/induction
Applications: Decision Trees

Trees with more than 2 children
* Representations

Traversing Binary Trees
* As methods taking a Binary Tree parameter
* With lterators

Implementing BinaryTree

* BinaryTree class

* |nstance variables
e BT parent, BT left, BT right, E value

7

parent

“4”

left |right

/

A

*

N

4

null

“*”

left

right

EMPTY EMPTY

\

N

parent
“2”
left |right
/ A
EMPTY EMPTY

2

A small tree null
value
//Isft right\
parent parent
value value
left |right Ie[t right
parent parent EMPTY
value value
left |right left |right
v A v A
EMPTY EMPTY EMPTY EMPTY

EMPTY != null!

N\

parent

value

left right

EMPTY

N

EMPTY

Implementing BinaryTree

* Many (!) methods: See BinaryTree javadoc page

* All “left” methods have equivalent “right” methods
e public BinaryTree()
* /[generates an empty node (EMPTY)
/[parent and value are null, left=right=this
e public BinaryTree(E value)
* /] generates a tree with a non-null value and two empty (EMPTY) subtrees
e public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
e /[returns a tree with a non-null value and two subtrees
e public void setLeft(BinaryTree<E> newLeft)
* /[sets left subtree to newLeft
e /] re-parents newLeft by calling newLeft.setParent(this)
e protected void setParent(BinaryTree<E> newParent)

e /[sets parent subtree to newParent
* /[called from setlLeft and setRight to keep all “links” consistent

Implementing BinaryTree

Methods:

public BinaryTree<E> left()

e /[returns left subtree
public BinaryTree<E> parent()

e /] post: returns reference to parent node, or null
public boolean isLeftChild()

* /[returns true if this is a left child of parent
public E value()

/[returns value associated with this node
public void setValue(E value)

/[sets the value associated with this node
public int size()

* /[returns number of (non-empty) nodes in tree
public int height()

e /] returns height of tree rooted at this node
But where’s “remove” or “add”!?!

BT Questions/Proofs

* Prove
* The number of nodes at depth n is at most 2"

* The number of nodes in tree of height n is at
most 21 — 1

* A tree with n nodes has exactly n — 1 edges
* The size() method works correctly

* The height() method works correctly

* The isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth d > 0 is at most 2%

|dea: Induction on depth d of nodes of tree

Base case: d = 0: 1 node; 1 =20/

Induction Hyp.: For some d > 0, there are at most 24
nodes at depth d

Induction Step: Consider depth d. There are at most 2
nodes at depth d + 1 for every node at depth d.

Therefore it has at most 2 * 24 = 22+1 hodes v

BT Questions/Proofs

Prove that any tree on n = 1 nodes has n — 1 edges
|dea: Induction on number of nodes
Base case:n = 1. There are no edgesv

Induction Hyp: Assume that, for some n > 1, every
tree on 1 nodes has exactly n — 1 edges.

Induction Step: Let T have n + 1 nodes. Show it has
exactly n edges.

 Remove a leaf v (and its single edge) from T
* Now T has n nodes, so it has n — 1 edges

* Now add v (and its single edge) back, giving n + 1
nodes and n edges.

BT Questions/Proofs

Prove that BinaryTree method size() is correct.

e Let n be the number of nodes in the tree T
Base case:n = 0. T is empty---size() returns 0v

nduction Hyp: Assume size() is correct for all trees
naving at most n nodes.

nduction Step: Assume T has n + 1 nodes
* Then left/right subtrees each have at most n nodes
* So size() returns correct value for each subtree

e And the size of Tis 1 + size of left subtree + size of
right subtree v/

Representing Knowledge

Trees can be used to represent knowledge
* Example: InfiniteQuestions game
e Let’s play!
We often call these trees decision trees
e Leaf: object

* Internal node: question to distinguish objects

Two methods: play() and learn()

* Play: Move down decision tree until we reach a leaf

e Check to see if the leaf is correct

e Learn: If not correct, add question, make new and old
objects children

Let’s look at the code

Building Decision Trees

Gather/obtain data

Analyze data

* Make greedy choices: Find good questions that
divide data into halves (or as close as possible)

Construct tree with shortest height
In general this is a *hard™* problem!

Example

CooIChPsS.com

Representing Arbitrary Trees

What if nodes can have many children?

* Example: Game trees

Replace left/right node references with a list of
children (Vector, SLL, etc)

 Allows getting “it"” child

Should provide method for getting degree of a
node

Degree 0 Empty list No children Leaf

Lab 9 Preview : Lexicon

* Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

56 0o

Lab 9 Preview : Tries

o A trie is a tree that stores words where
e Fach node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

 All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

AN
SICEONC

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element

o Start at the other end and visit each element

* How do we traverse binary trees!

* (At least) four reasonable mechanisms

Tree Traversals

Lucas

/N

Jacob Nambi

/NN

Aria Kelsie Tongyu

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

+
Tree Traversals ./ \7
/ N\
2 3
* Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)

o +¥237

e Pre-order

* |n-order

e Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2%3+7

(“pseudocode”)

+
Tree Traversals J/ \7
/N
* Post-order 2 3

e Each node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)

o 23%7+
* Level-order (not obviously recursive!)

e All nodes of level i are visited before nodes of
level i+1. (visit nodes left to right on each level)
o +¥723

(“pseudocode”)

Tree Traversals

public void pre-order (BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

For in-order and post-order: just move touch(t)!

But what about level-order???

/ N\
/ N\

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue *_Violet
T

Orange Yellow

N

Indigo Red

-

GB

L evel-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBV

L evel-Order Traversal

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

Indigo Red

GBVOY

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N
Indigo

GBVOYI

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

GBVOYIR

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\
Blue Violet 1
T~ Green
Orange Yellow ; 1
/\ todo queue

Indigo Red

L evel-Order Traversal

Green 1
/\ .
Violet
Blue Violet =
/\ Blue
Orange Yellow 1
/\ todo queue
Indigo Red

L evel-Order Traversal

Green
/\
Blue 1
Py Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB

L evel-Order Traversal

Green 1
/\
Yellow
Blue Violet
Py Orange
Orange Yellow 1
/\ todo queue
Indigo Red

GBV

Level-Order Traversal

Green

Blue Violet

todo queue

GBVO

L evel-Order Traversal

Green 1
/\
Red
Blue Violet =
Py Indigo
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOY

L evel-Order Traversal

Green
/\
Blue Violet l
Py Red
Orange Yellow 1
/\ todo queue
Indigo

GBVOYI

L evel-Order Traversal

Green
/\
Blue Violet
/\ L
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOYIR

L evel-Order Tree Traversal

public static <E> void levelOrder (BinaryTree<E> t) {
if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> g = new QueuelList<BinaryTree<E>>();

g.enqueue(t); // put root of tree in queue

while(!qg.isEmpty()) {
BinaryTree<E> next = g.dequeue();
touch(next);
if(!next.left().1isEmpty()) g.enqueue(next.left());
if(!next.right().isEmpty()) g.enqueue(next.right());

lterators

* Provide iterators that implement the different
tree traversal algorithms

* Methods provided by BinaryTree class:
* preorderlterator()
* inorderlterator()

e postorderlterator()

* levelorderlterator()

Implementing the Iterators

e Basic idea

e Should return elements in same order as
corresponding traversal method shown

e Recursive methods don’t convert as easily: must
phrase in terms of next() and hasNext()

e So, let’s start with levelOrder!

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root)

{

¥

todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

public void reset()

{

todo.clear();
// empty queue, add root
1f (!root.isEmpty()) todo.enqueue(root);

public

¥

public

Level-Order lterator

boolean hasNext() {
return !'todo.isEmpty(Q);

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

i1f (lcurrent.left().isEmpty())
todo.enqueue(current.left());

i1f (lcurrent.right().isEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

e Basic idea

e Should return elements in same order as
processed by pre-order traversal method

* Must phrase in terms of next() and hasNext()

* We “simulate recursion’ with stack

e The stack holds “partially processed” nodes

Pre-Order lterator

e Qutline: node - left tree — right tree
|. Constructor: Push root onto todo stack
2. On call to next():

 Pop node from stack

e Push right and then left nodes of popped node onto
stack

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
(Blue Violet > Blue

/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue
T Violet

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet Orange

T Yellow

Orange Yellow
/\ todo stack

Indigo Red

GBV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

T Indigo
Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T Yellow
Orange

/\ todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root)

{

todo = new StackList<BinaryTree<E>>();

this.root = root;
reset();

¥

public void reset()

{
todo.clear(); // stack 1is empty; push on root

1f (('root.1isEmpty()) todo.push(root);

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

¥

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().1sEmpty())
todo.push(old.left());

return result;

Tree Traversal Practice Problems

* Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

* Prove that levelOrder() takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as

the PreOrder (LevelOrder) traversal method

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

reen

Blue Violet Blue

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

/\

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Indigo

Orange

Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Blue Orange
Violet
Orange | Yellow
/\ todo stack

Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Red
Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\

Blue
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T Yellow

Orange
/< todo stack

Indigo Red

BGIORYV

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

In-Order lterator

e Qutline: left - node - right
|. Push left children (as far as possible) onto stack
2. On call to next():

e Pop node from stack
 Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext():
* return !stack.isEmpty()

Post-Order lterator

e |eft as an exercise...

Alternative Tree Representations

Green e Total # “slots” = 4n
T * Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

. e But trees capture
Indigo Red g
successor and predecessor
relationships that other
data structures don’ t...

Array-Based Binary Trees

* Encode structure of tree in array indexes

 Put root at index 0

* Where are children of node i?
e Children of node i are at 2i+| and 2i+2
* Look at example

* Where is parent of node j!
* Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

* Why are ArrayTrees good!
e Save space for links
* No need for additional memory allocated/garbage
collected

* Works well for full or complete trees

e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad!?
e Could waste a lot of space

* Tree of height of n requires 2"*!-| array slots even if only
O(n) elements

