
CSCI 136
Data Structures &

Advanced Programming

Lecture 19
Fall 2019

Instructor: Bill & Sam

Administration

• CS prereg info session today 2:35 Wege (TCL
123)

Last Time

• Trees
• Vocabulary L
• Expression Trees

• Recursive evaluation

• Implementation

3

Today

• Implementation (finish)
• Recursion/induction
• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees
• As methods taking a BinaryTree parameter
• With Iterators

4

Implementing BinaryTree
• BinaryTree class
• Instance variables
• BT parent, BT left, BT right, E value

null
“*”

rightleft

EMPTY

parent
“4”

rightleft

EMPTY

parent
“2”

rightleft

EMPTY EMPTY

*

4 2

parent
value

rightleft

parent
value

rightleft

null
value

rightleft

parent
value

rightleft

parent
value

rightleft

EMPTY EMPTYEMPTY EMPTY

EMPTY parent
value

rightleft

EMPTY EMPTY

EMPTY != null!

A small tree

Implementing BinaryTree
• Many (!) methods: See BinaryTree javadoc page
• All “left” methods have equivalent “right” methods

• public BinaryTree()
• // generates an empty node (EMPTY)
• // parent and value are null, left=right=this

• public BinaryTree(E value)
• // generates a tree with a non-null value and two empty (EMPTY) subtrees

• public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
• // returns a tree with a non-null value and two subtrees

• public void setLeft(BinaryTree<E> newLeft)
• // sets left subtree to newLeft
• // re-parents newLeft by calling newLeft.setParent(this)

• protected void setParent(BinaryTree<E> newParent)
• // sets parent subtree to newParent
• // called from setLeft and setRight to keep all “links” consistent

Implementing BinaryTree
• Methods:

• public BinaryTree<E> left()
• // returns left subtree

• public BinaryTree<E> parent()
• // post: returns reference to parent node, or null

• public boolean isLeftChild()
• // returns true if this is a left child of parent

• public E value()
• // returns value associated with this node

• public void setValue(E value)
• // sets the value associated with this node

• public int size()
• // returns number of (non-empty) nodes in tree

• public int height()
• // returns height of tree rooted at this node

• But where’s “remove” or “add”?!?!

BT Questions/Proofs

• Prove
• The number of nodes at depth 𝑛 is at most 2#

• The number of nodes in tree of height 𝑛 is at
most 2#$% − 1

• A tree with 𝑛 nodes has exactly 𝑛 − 1 edges

• The size() method works correctly
• The height() method works correctly
• The isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth 𝑑 ≥ 0 is at most 2+

Idea: Induction on depth 𝑑 of nodes of tree

Base case: 𝑑 = 0: 1 node; 1 = 2-✓
Induction Hyp.: For some 𝑑 ≥ 0, there are at most 2+
nodes at depth 𝑑
Induction Step: Consider depth 𝑑. There are at most 2
nodes at depth 𝑑 + 1 for every node at depth 𝑑.

Therefore it has at most 2 ∗ 2+ = 2+$% nodes✓

BT Questions/Proofs

Prove that any tree on 𝑛 ≥ 1 nodes has 𝑛 − 1 edges
Idea: Induction on number of nodes

Base case: 𝑛 = 1. There are no edges✓
Induction Hyp: Assume that, for some 𝑛 ≥ 1, every
tree on 𝑛 nodes has exactly 𝑛 − 1 edges.

Induction Step: Let T have 𝑛 + 1 nodes. Show it has
exactly 𝑛 edges.

• Remove a leaf v (and its single edge) from T
• Now T has 𝑛 nodes, so it has 𝑛 − 1 edges
• Now add v (and its single edge) back, giving 𝑛 + 1

nodes and 𝑛 edges.

BT Questions/Proofs
Prove that BinaryTree method size() is correct.

• Let n be the number of nodes in the tree T

Base case: 𝑛 = 0. T is empty---size() returns 0✓
Induction Hyp: Assume size() is correct for all trees
having at most 𝑛 nodes.
Induction Step: Assume T has 𝑛 + 1 nodes
• Then left/right subtrees each have at most 𝑛 nodes

• So size() returns correct value for each subtree
• And the size of T is 1 + size of left subtree + size of

right subtree✓

Representing Knowledge
• Trees can be used to represent knowledge

• Example: InfiniteQuestions game
• Let’s play!

• We often call these trees decision trees
• Leaf: object

• Internal node: question to distinguish objects

• Two methods: play() and learn()
• Play: Move down decision tree until we reach a leaf

• Check to see if the leaf is correct

• Learn: If not correct, add question, make new and old
objects children

• Let’s look at the code

Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example

Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a
node

• Degree 0 Empty list No children Leaf

Lab 9 Preview : Lexicon

• Goal: Build a data structure that can efficiently
store and search a large set of words

• A special kind of tree called a trie

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

Lab 9 Preview : Tries

• A trie is a tree that stores words where
• Each node holds a letter
• Some nodes are “word” nodes (dark circles)

• Any path from the root to a word node describes
one of the stored words

• All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

Now add “dot” and “news”

Tries

3

words to a file need to access the words in alphabetical order, so keeping the list of children
pointers sorted by letter will be advantageous.

Searching for words and prefixes

Searching the trie for words and prefixes is a matter of tracing out the path letter by letter. Let's
consider a few examples on the sample trie shown previously. To determine if the string new is a
word, start at the root node and examine its children to find one pointing to n. Once found, recur on
matching the remainder string ew. Find e among its children, follow its pointer, and recur again to
match w. Once we arrive at the w node, there are no more letters remaining in the input, so this is the
last node. The isWord field of this node is true, indicating that the path to this node is a word
contained in the lexicon.

Alternatively, search for ar. The path exists and we can trace our way through all letters, but the
isWord field on the last node is false, which indicates that this path is not a word. (It is, however, a
prefix of other words in the trie). Searching for nap follows n away from the root, but finds no a
child leading from there, so the path for this string does not exist in the trie and it is neither a word
nor a prefix in this trie.

All paths through the trie eventually lead to a valid node (a node where isWord has value true).
Therefore determining whether a string is a prefix of at least one word in the trie is simply a matter
of verifying that the path for the prefix exists.

Adding words

Adding a new word into the trie is a matter of tracing out its path starting from the root, as if
searching. If any part of the path does not exist, the missing nodes must be added to the trie. Lastly,
the isWord flag is turned on for the final node. In some situations, adding a new word will
necessitate adding a new node for each letter, for example, adding the word dot to our sample trie
will add three new nodes, one for each letter. On the other hand, adding the word news would only
require adding an s child to the end of existing path for new. Adding the word do after dot has
been added doesn't require any new nodes at all, just turning on the flag on an existing node. Here
is the sample trie after those three words have been added:

Start

A N Z

E

NT

S

E

R E O

W

S

D

O

T

A trie is an unusual data structure in that its performance can improve as it becomes more loaded.
Instead of slowing down as its get full, it becomes faster to add words when they can share
common prefix nodes with words already in the trie.

Removing words

The first step to removing a word is tracing out its path and turning off the isWord flag on the final
node. However, your work is not yet done because you need to remove any part of the word that is

Now remove “not” and “zen”

Tries

4

now a dead end. All paths in the trie must eventually lead to a word. If the word being removed was
the only valid word along this path, the nodes along that path must be deleted from the trie along
with the word. For example, if you removed the words zen and not from the trie shown previously,
you should have the result below.

Start

A N

S

E

R E O

W

S

D

O

T

As a general observation, there should never be a leaf node whose isWord field is false. If a node
has no children and does not represent a valid word (i.e., isWord is false), then this node is not
part of any path to a valid word in the trie and such nodes should be deleted when removing a word.
In some cases, removing a word from the trie may not require removing any nodes. For example, if
we were to remove the word new from the above trie, it turns off isWord but all nodes along that
path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require deallocation
are nodes on the path to the word that was removed. It would be extremely inefficient if you were to
traverse the whole trie to check for deallocating nodes every time a word was removed, and you
should not use such an inefficient strategy.

Other trie operations

There are few remaining odds and ends to the trie implementation. Creating an iterator and writing
the words to a file both involve a recursive exploration of all paths through the trie to find all of the
contained words. Remember that in both cases it is only words (not prefixes) that you want to
operate on and that these operations need to access the words in alphabetical order.

Once you have a working lexicon, you're ready to implement the snazzy spelling correction
features. There are two additional Lexicon member functions, one for suggesting simple corrections
and the second for regular expressions matching:

Set<string> *SuggestCorrections(string target, int maxDistance);

Set<string> *MatchRegex(string pattern);

Suggesting corrections

First consider the member function SuggestCorrections. Given a (potentially misspelled) target
string and a maximum distance, this function gathers the set of words from the lexicon that have a
distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings
differ. For example, "place" and "peace" have distance 1, "place" and "plank" have distance 2. The
returned set contains all words in the lexicon that are the same length as the target string and are
within the maximum distance.

Tree Traversals

• In linear structures, there are only a few basic
ways to traverse the data structure
• Start at one end and visit each element

• Start at the other end and visit each element

• How do we traverse binary trees?
• (At least) four reasonable mechanisms

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Lucas

NambiJacob

KelsieAria

Tree Traversals

Tongyu

Tree Traversals
• Pre-order
• Each node is visited before any children. Visit

node, then each node in left subtree, then each
node in right subtree. (node, left, right)
• +*237

• In-order
• Each node is visited after all nodes in left subtree

are visited and before any nodes in right subtree.
(left, node, right)
• 2*3+7

+

7*

32

(“pseudocode”)

Tree Traversals

• Post-order
• Each node is visited after its children are visited.

Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)
• 23*7+

• Level-order (not obviously recursive!)
• All nodes of level i are visited before nodes of

level i+1. (visit nodes left to right on each level)
• +*723

+

7*

32

(“pseudocode”)

Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

}

For in-order and post-order: just move touch(t)!

But what about level-order???

+

7*

32

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Green

todo queue

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Blue

todo queue

Violet

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B

Violet

todo queue

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Orange

todo queue

Yellow

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo queue

Indigo

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y

Indigo

todo queue

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I

todo queue

Red

Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R

todo queue

Level-Order Tree Traversal
public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
q.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = q.dequeue();
touch(next);
if(!next.left().isEmpty()) q.enqueue(next.left());
if(!next.right().isEmpty()) q.enqueue(next.right());

}
}

Iterators

• Provide iterators that implement the different
tree traversal algorithms

• Methods provided by BinaryTree class:
• preorderIterator()
• inorderIterator()
• postorderIterator()

• levelorderIterator()

Implementing the Iterators

• Basic idea
• Should return elements in same order as

corresponding traversal method shown
• Recursive methods don’t convert as easily: must

phrase in terms of next() and hasNext()
• So, let’s start with levelOrder!

Level-Order Iterator

public BTLevelorderIterator(BinaryTree<E> root)
{

todo = new QueueList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}

public void reset()
{

todo.clear();
// empty queue, add root
if (!root.isEmpty()) todo.enqueue(root);

}

Level-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
if (!current.left().isEmpty())

todo.enqueue(current.left());
if (!current.right().isEmpty())

todo.enqueue(current.right());
return result;

}

Pre-Order Iterator

• Basic idea
• Should return elements in same order as

processed by pre-order traversal method
• Must phrase in terms of next() and hasNext()
• We “simulate recursion” with stack

• The stack holds “partially processed” nodes

Pre-Order Iterator

• Outline: node - left tree – right tree
1. Constructor: Push root onto todo stack
2. On call to next():

• Pop node from stack
• Push right and then left nodes of popped node onto

stack

• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G

Violet

todo stack

Blue

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow

G B

Green

Violet

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Yellow

todo stack

Orange

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo stack

Red

Indigo

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I

Yellow

todo stack

Red

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R

Yellow

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R Y

todo stack

Visit node, then each node in left subtree, then
each node in right subtree.

Pre-Order Iterator

public BTPreorderIterator(BinaryTree<E> root)
{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}

public void reset()
{

todo.clear(); // stack is empty; push on root
if ((!root.isEmpty()) todo.push(root);

}

Pre-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (!old.right().isEmpty())
todo.push(old.right());

if (!old.left().isEmpty())
todo.push(old.left());

return result;
}

Tree Traversal Practice Problems

• Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

• Prove that levelOrder() takes O(n) time,
where n is the size of the tree

• Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Blue

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B

Green

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G

Violet

todo stack

Orange

Indigo

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I

Violet

todo stack

Orange

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O

Violet

todo stack

Red

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R

Violet

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V

Yellow

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V Y

todo stack

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

In-Order Iterator

• Outline: left - node - right
1. Push left children (as far as possible) onto stack

2. On call to next():
• Pop node from stack

• Push right child and follow left children as far as possible
• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()

Post-Order Iterator

• Left as an exercise…

Alternative Tree Representations

• Total # “slots” = 4n
• Since each BinaryTree

maintains a reference to
left, right, parent, value

• 2-4x more overhead than
vector, SLL, array, …

• But trees capture
successor and predecessor
relationships that other
data structures don’t…

Green

Blue Violet

Indigo Red

Orange Yellow

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only

O(n) elements

