
CSCI 136
Data Structures &

Advanced Programming

Lecture 19
Fall 2019

Instructor: B&S



Last Time

• Trees
• Expression Trees

• Recursive evaluation

• Implementation
• Recursion/Induction on Trees

2



Today

• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees
• As methods taking a BinaryTree parameter
• With Iterators

3



Representing Knowledge
• Trees can be used to represent knowledge

• Example: InfiniteQuestions game
• Let’s play!

• We often call these trees decision trees
• Leaf: object

• Internal node: question to distinguish objects

• Two methods: play() and learn()
• Play: Move down decision tree until we reach a leaf

• Check to see if the leaf is correct

• Learn: If not correct, add question, make new and old 
objects children

• Let’s look at the code



Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that 

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example

yellow



Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of 
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a 
node

• Degree 0 Empty list No children Leaf



Tree Traversals

• In linear structures, there are only a few basic 
ways to traverse the data structure
• Start at one end and visit each element

• Start at the other end and visit each element

• How do we traverse binary trees?
• (At least) four reasonable mechanisms



In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Lucas

NambiJacob

KelsieAria

Tree Traversals

Tongyu



Tree Traversals
• Pre-order
• Each node is visited before any children. Visit 

node, then each node in left subtree, then each 
node in right subtree. (node, left, right)
• +*237

• In-order
• Each node is visited after all nodes in left subtree 

are visited and before any nodes in right subtree. 
(left, node, right)
• 2*3+7

+

7*

32

(“pseudocode”)



Tree Traversals

• Post-order
• Each node is visited after its children are visited. 

Visit all nodes in left subtree, then all nodes in 
right subtree, then node itself. (left, right, node)
• 23*7+

• Level-order (not obviously recursive!)
• All nodes of level i are visited before nodes of 

level i+1. (visit nodes left to right on each level)  
• +*723

+

7*

32

(“pseudocode”)



Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

}

For in-order and post-order: just move touch(t)!

But what about level-order???

+

7*

32



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

Green

todo queue



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G

Blue

todo queue

Violet



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B

Violet

todo queue



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Orange

todo queue

Yellow



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo queue

Indigo

Red



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y

Indigo

todo queue

Red



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I

todo queue

Red



Level-Order Traversal

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O Y I R

todo queue



Level-Order Tree Traversal
public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
q.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = q.dequeue();
touch(next);
if(!next.left().isEmpty()  ) q.enqueue( next.left() );
if(!next.right().isEmpty() ) q.enqueue(next.right());

}
}



Iterators

• Provide iterators that implement the different 
tree traversal algorithms

• Methods provided by BinaryTree class:
• preorderIterator()
• inorderIterator()
• postorderIterator()

• levelorderIterator()



Implementing the Iterators

• Basic idea
• Should return elements in same order as 

corresponding traversal method shown
• Recursive methods don’t convert as easily: must 

phrase in terms of next() and hasNext()
• So, let’s start with levelOrder!



Level-Order Iterator

public BTLevelorderIterator(BinaryTree<E> root)
{

todo = new QueueList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}   

public void reset()
{

todo.clear();
// empty queue, add root
if (!root.isEmpty()) todo.enqueue(root);

}



Level-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
if (!current.left().isEmpty())

todo.enqueue(current.left());
if (!current.right().isEmpty())

todo.enqueue(current.right());
return result;

}



Pre-Order Iterator

• Basic idea
• Should return elements in same order as 

processed by pre-order traversal method
• Must phrase in terms of next() and hasNext()
• We “simulate recursion” with stack

• The stack holds “partially processed” nodes



Pre-Order Iterator

• Outline: node - left tree – right tree
1. Constructor: Push root onto todo stack
2. On call to next():

• Pop node from stack
• Push right and then left nodes of popped node onto 

stack

• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Visit node, then each node in left subtree, then 
each node in right subtree.



Green

Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G

Violet

todo stack

Blue

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Blue Violet

Indigo Red

Orange Yellow

G B

Green

Violet

todo stack

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V

Yellow

todo stack

Orange

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O

Yellow

todo stack

Red

Indigo

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I

Yellow

todo stack

Red

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R

Yellow

todo stack

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

G B V O I R Y

todo stack

Visit node, then each node in left subtree, then 
each node in right subtree.



Pre-Order Iterator

public BTPreorderIterator(BinaryTree<E> root)
{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}   

public void reset()
{

todo.clear(); // stack is empty; push on root
if ((!root.isEmpty()) todo.push(root);

}



Pre-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (!old.right().isEmpty()) 
todo.push(old.right());

if (!old.left().isEmpty()) 
todo.push(old.left());

return result;
}



Tree Traversal Practice Problems

• Prove that levelOrder() is correct: that is, that 
it touches the nodes of the tree in the correct 
order (Hint: induction by level)

• Prove that levelOrder() takes O(n) time, 
where n is the size of the tree

• Prove that the PreOrder (LevelOrder) 
Iterator visits the nodes in the same order as 
the PreOrder (LevelOrder) traversal method



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow
Green

todo stack

Blue

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B

Green

todo stack

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G

Violet

todo stack

Orange

Indigo

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I

Violet

todo stack

Orange

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O

Violet

todo stack

Red

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R

Violet

todo stack

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V

Yellow

todo stack

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

Green

Blue Violet

Indigo Red

Orange Yellow

B G I O R V Y

todo stack

Each node is visited after all nodes in left subtree 
are visited and before any nodes in right subtree.



In-Order Iterator

• Outline: left - node - right
1. Push left children (as far as possible) onto stack

2. On call to next():
• Pop node from stack

• Push right child and follow left children as far as possible
• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()



Post-Order Iterator

• Left as an exercise…



Alternative Tree Representations

• Total # “slots” = 4n 
• Since each BinaryTree

maintains a reference to 
left, right, parent, value

• 2-4x more overhead than 
vector, SLL, array, …

• But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 

Green

Blue Violet

Indigo Red

Orange Yellow



Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage 

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or 

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only 

O(n) elements


