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Last Time

• Trees
• Expression Trees

• Recursive evaluation

• Implementation
• Recursion/Induction on Trees
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Today

• Applications: Decision Trees
• Trees with more than 2 children
• Representations

• Traversing Binary Trees
• As methods taking a BinaryTree parameter
• With Iterators
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Representing Knowledge
• Trees can be used to represent knowledge

• Example: InfiniteQuestions game
• Let’s play!

• We often call these trees decision trees
• Leaf: object

• Internal node: question to distinguish objects

• Two methods: play() and learn()
• Play: Move down decision tree until we reach a leaf

• Check to see if the leaf is correct

• Learn: If not correct, add question, make new and old 
objects children

• Let’s look at the code



Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that 

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example

yellow



Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of 
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a 
node

• Degree 0 Empty list No children Leaf



Tree Traversals

• In linear structures, there are only a few basic 
ways to traverse the data structure
• Start at one end and visit each element

• Start at the other end and visit each element

• How do we traverse binary trees?
• (At least) four reasonable mechanisms



In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

Lucas

NambiJacob

KelsieAria

Tree Traversals

Tongyu



Tree Traversals
• Pre-order
• Each node is visited before any children. Visit 

node, then each node in left subtree, then each 
node in right subtree. (node, left, right)
• +*237

• In-order
• Each node is visited after all nodes in left subtree 

are visited and before any nodes in right subtree. 
(left, node, right)
• 2*3+7

+

7*
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(“pseudocode”)



Tree Traversals

• Post-order
• Each node is visited after its children are visited. 

Visit all nodes in left subtree, then all nodes in 
right subtree, then node itself. (left, right, node)
• 23*7+

• Level-order (not obviously recursive!)
• All nodes of level i are visited before nodes of 

level i+1. (visit nodes left to right on each level)  
• +*723

+

7*

32

(“pseudocode”)



Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder(t.right());

}

For in-order and post-order: just move touch(t)!

But what about level-order???

+

7*
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Level-Order Traversal
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Level-Order Traversal
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Level-Order Tree Traversal
public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> q = new QueueList<BinaryTree<E>>();
q.enqueue(t); // put root of tree in queue

while(!q.isEmpty()) {
BinaryTree<E> next = q.dequeue();
touch(next);
if(!next.left().isEmpty()  ) q.enqueue( next.left() );
if(!next.right().isEmpty() ) q.enqueue(next.right());

}
}



Iterators

• Provide iterators that implement the different 
tree traversal algorithms

• Methods provided by BinaryTree class:
• preorderIterator()
• inorderIterator()
• postorderIterator()

• levelorderIterator()



Implementing the Iterators

• Basic idea
• Should return elements in same order as 

corresponding traversal method shown
• Recursive methods don’t convert as easily: must 

phrase in terms of next() and hasNext()
• So, let’s start with levelOrder!



Level-Order Iterator

public BTLevelorderIterator(BinaryTree<E> root)
{

todo = new QueueList<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}   

public void reset()
{

todo.clear();
// empty queue, add root
if (!root.isEmpty()) todo.enqueue(root);

}



Level-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> current = todo.dequeue();
E result = current.value();
if (!current.left().isEmpty())

todo.enqueue(current.left());
if (!current.right().isEmpty())

todo.enqueue(current.right());
return result;

}



Pre-Order Iterator

• Basic idea
• Should return elements in same order as 

processed by pre-order traversal method
• Must phrase in terms of next() and hasNext()
• We “simulate recursion” with stack

• The stack holds “partially processed” nodes



Pre-Order Iterator

• Outline: node - left tree – right tree
1. Constructor: Push root onto todo stack
2. On call to next():

• Pop node from stack
• Push right and then left nodes of popped node onto 

stack

• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()



Pre-Order Iterator

Green
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Indigo Red

Orange Yellow

Visit node, then each node in left subtree, then 
each node in right subtree.
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Pre-Order Iterator
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Pre-Order Iterator

public BTPreorderIterator(BinaryTree<E> root)
{

todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

}   

public void reset()
{

todo.clear(); // stack is empty; push on root
if ((!root.isEmpty()) todo.push(root);

}



Pre-Order Iterator

public boolean hasNext() {
return !todo.isEmpty();

}

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (!old.right().isEmpty()) 
todo.push(old.right());

if (!old.left().isEmpty()) 
todo.push(old.left());

return result;
}



Tree Traversal Practice Problems

• Prove that levelOrder() is correct: that is, that 
it touches the nodes of the tree in the correct 
order (Hint: induction by level)

• Prove that levelOrder() takes O(n) time, 
where n is the size of the tree

• Prove that the PreOrder (LevelOrder) 
Iterator visits the nodes in the same order as 
the PreOrder (LevelOrder) traversal method



In-Order Iterator
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In-Order Iterator

• Outline: left - node - right
1. Push left children (as far as possible) onto stack

2. On call to next():
• Pop node from stack

• Push right child and follow left children as far as possible
• Return node’s value

3. On call to hasNext():
• return !stack.isEmpty()



Post-Order Iterator

• Left as an exercise…



Alternative Tree Representations

• Total # “slots” = 4n 
• Since each BinaryTree

maintains a reference to 
left, right, parent, value

• 2-4x more overhead than 
vector, SLL, array, …

• But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 

Green

Blue Violet

Indigo Red

Orange Yellow



Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage 

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or 

more of the rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only 

O(n) elements


