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Administrative Details

• Lab 7 Today: PostScript
• No partners this week
• Review before lab; come to lab with design doc

• Check out the javadoc pages for the 3 provided 
classes
• Token – A wrapper for semantic PS elements,
• Reader – An iterator to produce a stream of Tokens 

from standard input or a List of Tokens,

• SymbolTable – A dictionary with String keys and Token 
values: For user-defined names
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http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~lenhart/cs136/javadoc/ps/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html


Last Time:

• Ordered Structures
• Trees
• Structure, Terminology, Examples
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Today

• Trees
• Implementation
• Recursion/Induction on Trees
• Applications
• Traversals
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Type Safety & Generic Types
• Question: Since String extends Object, does List<String> extend 

List<Object>?
• I.e., can I say List<Object> = new List<String>()?

• No.  It would compromise the type system:
List<String> slist = new List<String>();
List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

• It generates a compiler error.
• On the other hand…

String[] sa = {“I”, “love”, “java”, “!”};
Object[] oa = sa;
oa[1] = new Object()); // This would be bad!

• …actually compiles
• But causes a run-time error!



Introducing Trees

• Our structures have had a linear organization
• Stacks, queues
• Even ordered vectors, ordered lists, arrays, 

vectors, lists are visualized linearly

• By linear we essentially mean that each 
element has at most one successor and at 
most one predecessor…





Branching Out: Trees

• A tree is a data structure where elements can 
have multiple successors (called children)

• But still only one predecessor (called parent)



Root

Leaves



William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

House of Normandy, Battle of Hastings, 1066



Tree Features

• Hierarchical relationship
• Root at the top

• Leaf at the bottom
• Interior nodes in middle
• Parents, children, ancestors, descendants, siblings
• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height of tree: maximum depth (across all nodes)



Other Trees

• Phylogenetic tree
• Directories of files
• Game trees
• Build a tree 
• Search it for moves with high likelihood of 

winning

• Expression trees
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Tree Features

• Hierarchical relationship
• Root at the top

• Leaf at the bottom
• Interior nodes in middle
• Parents, children, ancestors, descendants, siblings
• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height of tree: maximum depth (across all nodes)
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Introducing Binary Trees
• Degree of each node at most 2
• Every tree is either: 
• Empty, or
• A root with left and right subtrees

• SLL: Recursive nature was captured by hidden 
node (Node<E>) class

• Binary Tree: No “inner” node class
• Single BinaryTree class does it all

• Is it a tree or a node?
• It’s a node that’s a root of a tree!

• And it’s not part of Structure hierarchy!
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BinaryTree<String> fourTimesTwo =  new BinaryTree<String>

(“*”,new BinaryTree<String>(“4”),new BinaryTree<String>(“2”));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>

(“+”, fourTimesTwo,  new BinaryTree<String>(“3”));

Expression Trees

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)



Expression Trees

• General strategy
• Make a binary tree (BT) for each leaf node

• Move from bottom to top, creating BTs

• Eventually reach the root
• Call “evaluate” on final BT

• Example 
• How do we make a binary expression tree for 

(((4+3)*(10-5))/2)
• Postfix notation: 4 3 + 10 5 - * 2 /



int evaluate(BinaryTree<String> expr) {

if (expr.height() == 0)
return Integer.parseInt(expr.value());

else {
int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case "+" : return left + right;
case "-" : return left - right;
case "*" : return left * right;
case "/" : return left / right;
}

Assert.fail("Bad op");
return -1;

}
}



Full vs. Complete (non-standard!)

• Full tree – A full binary 
tree of height h has 
leaves only on level h, 
and each internal node 
has exactly 2 children.

• Complete tree – A 
complete binary tree of 
height h is full to height h-1 
and has all leaves at level h 
in leftmost locations.

All full trees are complete, but not all complete trees are full! 



Implementing BinaryTree

• BinaryTree<E> class
• Instance variables
• BinaryTree: parent, left, right
• E: value

• left and right are never null
• If no child, they point to an 

“empty” tree
• Empty tree T has value null, 

parent null, left = right = T

• Only empty tree nodes have 
null value

parent
value

rightleft

EMPTY BT  

null
null

thisthis



Implementing BinaryTree
• BinaryTree class
• Instance variables
• BT parent, BT left, BT right, E value

null
“*”

rightleft

EMPTY

parent
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rightleft

EMPTY

parent
“2”

rightleft
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parent
value

rightleft

parent
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rightleft

null
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rightleft

parent
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rightleft

parent
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rightleft
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EMPTY parent
value

rightleft

EMPTY EMPTY

EMPTY != null!

A small tree



Implementing BinaryTree
• Many (!) methods: See BinaryTree javadoc page
• All “left” methods have equivalent “right” methods

• public BinaryTree() 
• // generates an empty node (EMPTY)
• // parent and value are null, left=right=this 

• public BinaryTree(E value) 
• // generates a tree with a non-null value and two empty (EMPTY) subtrees

• public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right) 
• // returns a tree with a non-null value and two subtrees

• public void setLeft(BinaryTree<E> newLeft) 
• // sets left subtree to newLeft
• // re-parents newLeft by calling newLeft.setParent(this)

• protected void setParent(BinaryTree<E> newParent) 
• // sets parent subtree to newParent
• // called from setLeft and setRight to keep all “links” consistent 



Implementing BinaryTree
• Methods:

• public BinaryTree<E> left() 
• // returns left subtree

• public BinaryTree<E> parent() 
• // post: returns reference to parent node, or null 

• public boolean isLeftChild() 
• // returns true if this is a left child of parent 

• public E value() 
• // returns value associated with this node 

• public void setValue(E value) 
• // sets the value associated with this node

• public int size()
• // returns number of (non-empty) nodes in tree

• public int height()
• // returns height of tree rooted at this node

• But where’s “remove” or “add”?!?!



BT Questions/Proofs

• Prove
• The number of nodes at depth 𝑛 is at most 2#

• The number of nodes in tree of height 𝑛 is at 
most 2#$% − 1

• A tree with 𝑛 nodes has exactly 𝑛 − 1 edges

• The size() method works correctly
• The height() method works correctly
• The isFull() method works correctly



BT Questions/Proofs

Prove: Number of nodes at depth 𝑑 ≥ 0 is at most 2+

Idea: Induction on depth 𝑑 of nodes of tree

Base case: 𝑑 = 0: 1 node; 1 = 2-✓
Induction Hyp.: For some 𝑑 ≥ 0, there are at most 2+
nodes at depth 𝑑
Induction Step: Consider depth 𝑑 + 1. There are at 
most 2 nodes at depth. 𝑑 + 1 for every node at depth 
𝑑.

Therefore it has at most 2 ∗ 2+ = 2+$% nodes✓



BT Questions/Proofs

Prove that any tree on 𝑛 ≥ 1 nodes has 𝑛 − 1 edges
Idea: Induction on number of nodes

Base case: 𝑛 = 1. There are no edges✓
Induction Hyp: Assume that, for some 𝑛 ≥ 1, every 
tree on 𝑛 nodes has exactly 𝑛 − 1 edges.

Induction Step: Let T have 𝑛 + 1 nodes. Show it has 
exactly 𝑛 edges.

• Remove a leaf v (and its single edge) from T
• Now T has 𝑛 nodes, so it has 𝑛 − 1 edges
• Now add v (and its single edge) back, giving 𝑛 + 1

nodes and 𝑛 edges.



BT Questions/Proofs
Prove that BinaryTree method size() is correct.

• Let n be the number of nodes in the tree T

Base case: 𝑛 = 0. T is empty---size() returns 0✓
Induction Hyp: Assume size() is correct for all trees 
having at most 𝑛 nodes.
Induction Step: Assume T has 𝑛 + 1 nodes
• Then left/right subtrees each have at most 𝑛 nodes

• So size() returns correct value for each subtree
• And the size of T is 1 + size of left subtree + size of 

right subtree✓



Representing Knowledge

• Trees can be used to represent knowledge
• Example: InfiniteQuestions game

• We often call these trees decision trees
• Leaf: object

• Internal node: question to distinguish objects

• Move down decision tree until we reach a leaf node

• Check to see if the leaf is correct
• If not, add another question, make new and old objects 

children

• Let’s look at the code…



Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that 

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example



Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of 
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a 
node

• Degree 0 = Empty list = No children = Leaf


