CSCI 136
Data Structures &
Advanced Programming

Lecture |8

Fall 2019
Instructor: B&S

Administrative Details

e Lab 7 Today: PostScript

* No partners this week
* Review before lab; come to lab with design doc

e Check out the javadoc pages for the 3 provided
classes
e Token — A wrapper for semantic PS elements,

e Reader — An iterator to produce a stream of Tokens
from standard input or a List of Tokens,

e SymbolTable — A dictionary with String keys and Token
values: For user-defined names

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~lenhart/cs136/javadoc/ps/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html

Last Time:

e Ordered Structures

* Trees
e Structure, Terminology, Examples

Today

 Trees
* Implementation
e Recursion/Induction on Trees
* Applications
 Traversals

Type Safety & Generic Types

Question: Since String extends Object, does List<String> extend
List<Object>?

* l.e, can | say List<Object> = new List<String>()?

No. It would compromise the type system:

List<String> slist = new List<String>();

List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

It generates a compiler error.
On the other hand...

String[] sa = {”1I”, *“love”, *“java”, “!"};
Object[] oa = sa;

oa[l] = new Object()); // This would be bad!
...actually compiles

e But causes a run-time error!

Introducing Trees

e Our structures have had a linear organization
 Stacks, queues
* Even ordered vectors, ordered lists, arrays,
vectors, lists are visualized linearly
* By linear we essentially mean that each
element has at most one successor and at
most one predecessor...

Branching Out: Trees

e A tree is a data structure where elements can
have multiple successors (called children)

* But still only one predecessor (called parent)

Root

DR oo
Mw&%mv. M.an\mz X
g - LSV EROTT RS
SIS
¢ATH

25

AL
oe

XS
P wﬂ,,

House of Normandy, Battle of Hastings, 1066

William |
Robert William |l Adela Henry |
Stephen William Matilda

Henry I

Tree Features

Hierarchical relationship

Root at the top

Leaf at the bottom

Interior nodes in middle

Parents, children, ancestors, descendants, siblings
Degree (of node): number of children of node
Degree (of tree): maximum degree (across all nodes)
Depth of node: number of edges from root to node

Height of tree: maximum depth (across all nodes)

Other Trees

Phylogenetic tree
Directories of files

Game trees
e Build a tree

* Search it for moves with high likelihood of
winning

Expression trees

Plughclmimhec Mollueca ¢ Arthropoda Chordata

j ﬂ * @ Precent Day
c“dm Nematoda

Echinodermata
Peewllocoelorm
No bdd
cad Segueeflation Segfaentation
YOS OMES DELREROSTOMES
co 2or coelom from
cell madgg digestive tube
Coelom o
Radial syrametry =y Phylogenetic
Bilateral eymm
e’ e of the T" cc
Animal Kingdom

True Ticoues

Ancectral Proticte

Miocene

Pleistocene
)~ Before Present

an

L

Pliocene
5
LI |

I

4

o f—

Millions of Years

Black Bear
Domestic Dog
Gray Wolf

Coyole

Cape Hunting Dog

Black-Backed Jacksi

Bush Dog
Maned Wolf
Hoary Fox
Crab-Eating Fox
Gray Fox
Bat-Eared Fox
Raccoon Dog
Cape Fox

Red Fox
Fennec Fox
Kit Fox

Arctic Fox

spilued
MN-HOM

spiued

uesAWYy

spilued
NI-X04

yinos

~lenhart

el

research papers

index.html cs136 cs356T

N

lectures.html handouts.html

Tree Features

Hierarchical relationship

Root at the top

Leaf at the bottom

Interior nodes in middle

Parents, children, ancestors, descendants, siblings
Degree (of node): number of children of node
Degree (of tree): maximum degree (across all nodes)
Depth of node: number of edges from root to node

Height of tree: maximum depth (across all nodes)

Expression Trees

4%2+3 g//\\\

+ /
(4%2+3) + ((10-2)/ 4) SN RN
*x -
3 4

N N
4 2 10 2

Introducing Binary Trees

Degree of each node at most 2

Every tree is either:
* Empty, or
* A root with left and right subtrees

SLL: Recursive nature was captured by hidden
node (Node<E>) class

Binary Tree: No “inner” node class
* Single BinaryTree class does it all

e |s it a tree or a node!?

* |t’s a node that’s a root of a tree!

* And it’s not part of Structure hierarchy!

Expression Trees

4%2+3 */\

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)

BinaryTree<String> fourTimesTwo = new BinaryTree<String>

(“*",new BinaryTree<String>(“4"),new BinaryTree<String>(“2"));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>

(“+”, fourTimesTwo, new BinaryTree<String>(“3"));

Expression Trees

* General strategy
* Make a binary tree (BT) for each leaf node
* Move from bottom to top, creating BTs
e Eventually reach the root
e Call “evaluate” on final BT

 Example
* How do we make a binary expression tree for
(((4+3)%(10-3))/2)

e Postfix notation: 43+ 105-*2/

int evaluate(BinaryTree<String> expr) {

1if (expr.height() == 0)
return Integer.parselnt(expr.value());

else {
int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case "+" : return left + right;
case "-" : return left - right;
case "*" : return left * right;
case "/" : return left / right;
}

Assert.fail("Bad op");
return -1;

Full vs. Complete (non-standard!)

e Full tree — A full binary ¢ Complete tree — A

tree of height h has complete binary tree of
leaves only on level h, height h is full to height h-|
and each internal node and has all leaves at level h
has exactly 2 children. in leftmost locations.

All full trees are complete, but not all complete trees are full!

Implementing BinaryTree

T

* BinaryTree<E> class Sarent
* Instance variables value
* BinaryTree: parent, left, right left |right

. E: value / \

* left and right are never null
* If no child, they point to an

“empty” tree null
e Empty tree T has value null, h‘nu”h‘
parent null, left = right = T this | this
e Only empty tree nodes have EMPTY BT

null value

Implementing BinaryTree

* BinaryTree class

* |nstance variables
e BT parent, BT left, BT right, E value

7

parent

“4”

left |right

/

A

*

N

4

null

“*”

left

right

EMPTY EMPTY

\

N

parent
“2”
left |right
/ A
EMPTY EMPTY

2

A small tree null
value
//Isft right\
parent parent
value value
left |right Ie[t right
parent parent EMPTY
value value
left |right left |right
v A v A
EMPTY EMPTY EMPTY EMPTY

EMPTY != null!

N\

parent

value

left right

EMPTY

N

EMPTY

Implementing BinaryTree

* Many (!) methods: See BinaryTree javadoc page

* All “left” methods have equivalent “right” methods
e public BinaryTree()
* /[generates an empty node (EMPTY)
/[parent and value are null, left=right=this
e public BinaryTree(E value)
* /] generates a tree with a non-null value and two empty (EMPTY) subtrees
e public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
e /[returns a tree with a non-null value and two subtrees
e public void setLeft(BinaryTree<E> newLeft)
* /[sets left subtree to newLeft
e /] re-parents newLeft by calling newLeft.setParent(this)
e protected void setParent(BinaryTree<E> newParent)

e /[sets parent subtree to newParent
* /[called from setlLeft and setRight to keep all “links” consistent

Implementing BinaryTree

Methods:

public BinaryTree<E> left()

e /[returns left subtree
public BinaryTree<E> parent()

e /] post: returns reference to parent node, or null
public boolean isLeftChild()

* /[returns true if this is a left child of parent
public E value()

/[returns value associated with this node
public void setValue(E value)

/[sets the value associated with this node
public int size()

* /[returns number of (non-empty) nodes in tree
public int height()

e /] returns height of tree rooted at this node
But where’s “remove” or “add”!?!

BT Questions/Proofs

* Prove
* The number of nodes at depth n is at most 2"

* The number of nodes in tree of height n is at
most 21 — 1

* A tree with n nodes has exactly n — 1 edges
* The size() method works correctly

* The height() method works correctly

* The isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth d > 0 is at most 2%

|dea: Induction on depth d of nodes of tree

Base case: d = 0: 1 node; 1 =20/

Induction Hyp.: For some d > 0, there are at most 24
nodes at depth d

Induction Step: Consider depth d + 1. There are at
most 2 nodes at depth. d + 1 for every node at depth

d.
Therefore it has at most 2 * 2% = 29+1 nodes v’

BT Questions/Proofs

Prove that any tree on n = 1 nodes has n — 1 edges
|dea: Induction on number of nodes
Base case:n = 1. There are no edgesv

Induction Hyp: Assume that, for some n > 1, every
tree on 1 nodes has exactly n — 1 edges.

Induction Step: Let T have n + 1 nodes. Show it has
exactly n edges.

 Remove a leaf v (and its single edge) from T
* Now T has n nodes, so it has n — 1 edges

* Now add v (and its single edge) back, giving n + 1
nodes and n edges.

BT Questions/Proofs

Prove that BinaryTree method size() is correct.

e Let n be the number of nodes in the tree T
Base case:n = 0. T is empty---size() returns 0v

nduction Hyp: Assume size() is correct for all trees
naving at most n nodes.

nduction Step: Assume T has n + 1 nodes
* Then left/right subtrees each have at most n nodes
* So size() returns correct value for each subtree

e And the size of Tis 1 + size of left subtree + size of
right subtree v/

Representing Knowledge

Trees can be used to represent knowledge

* Example: InfiniteQuestions game

We often call these trees decision trees
e Leaf: object

* Internal node: question to distinguish objects
Move down decision tree until we reach a leaf node

Check to see if the leaf is correct

* If not, add another question, make new and old objects
children

Let’s look at the code...

Building Decision Trees

Gather/obtain data

Analyze data

* Make greedy choices: Find good questions that
divide data into halves (or as close as possible)

Construct tree with shortest height
In general this is a *hard™* problem!

Example

CooIChPsS.com

Representing Arbitrary Trees

What if nodes can have many children?

* Example: Game trees

Replace left/right node references with a list of
children (Vector, SLL, etc)

 Allows getting “it"” child

Should provide method for getting degree of a
node

Degree 0 = Empty list = No children = Leaf

