
CSCI 136
Data Structures &

Advanced Programming

Lecture 18
Fall 2019

Instructor: B&S

Administrative Details

• Lab 7 Today: PostScript
• No partners this week
• Review before lab; come to lab with design doc

• Check out the javadoc pages for the 3 provided
classes
• Token – A wrapper for semantic PS elements,
• Reader – An iterator to produce a stream of Tokens

from standard input or a List of Tokens,

• SymbolTable – A dictionary with String keys and Token
values: For user-defined names

2

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~lenhart/cs136/javadoc/ps/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html

Last Time:

• Ordered Structures
• Trees
• Structure, Terminology, Examples

3

Today

• Trees
• Implementation
• Recursion/Induction on Trees
• Applications
• Traversals

4

Type Safety & Generic Types
• Question: Since String extends Object, does List<String> extend

List<Object>?
• I.e., can I say List<Object> = new List<String>()?

• No. It would compromise the type system:
List<String> slist = new List<String>();
List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

• It generates a compiler error.
• On the other hand…

String[] sa = {“I”, “love”, “java”, “!”};
Object[] oa = sa;
oa[1] = new Object()); // This would be bad!

• …actually compiles
• But causes a run-time error!

Introducing Trees

• Our structures have had a linear organization
• Stacks, queues
• Even ordered vectors, ordered lists, arrays,

vectors, lists are visualized linearly

• By linear we essentially mean that each
element has at most one successor and at
most one predecessor…

Branching Out: Trees

• A tree is a data structure where elements can
have multiple successors (called children)

• But still only one predecessor (called parent)

Root

Leaves

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

House of Normandy, Battle of Hastings, 1066

Tree Features

• Hierarchical relationship
• Root at the top

• Leaf at the bottom
• Interior nodes in middle
• Parents, children, ancestors, descendants, siblings
• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height of tree: maximum depth (across all nodes)

Other Trees

• Phylogenetic tree
• Directories of files
• Game trees
• Build a tree
• Search it for moves with high likelihood of

winning

• Expression trees

~lenhart

www

index.html cs136

lectures.html handouts.html

research papers

... ...
cs356T

X
X

X

X X
X X

X X

O

O

O

O

O

O

... ...

...

...
X O

X
X
O

Tree Features

• Hierarchical relationship
• Root at the top

• Leaf at the bottom
• Interior nodes in middle
• Parents, children, ancestors, descendants, siblings
• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height of tree: maximum depth (across all nodes)

+

*

4 2

3
4 * 2 + 3

Expression Trees

*

4 2

3
-

10 2

4

+

+ /

(4 * 2 + 3) + ((10 – 2)/ 4)

Introducing Binary Trees
• Degree of each node at most 2
• Every tree is either:
• Empty, or
• A root with left and right subtrees

• SLL: Recursive nature was captured by hidden
node (Node<E>) class

• Binary Tree: No “inner” node class
• Single BinaryTree class does it all

• Is it a tree or a node?
• It’s a node that’s a root of a tree!

• And it’s not part of Structure hierarchy!

+

*

4 2

3
4 * 2 + 3

BinaryTree<String> fourTimesTwo = new BinaryTree<String>

(“*”,new BinaryTree<String>(“4”),new BinaryTree<String>(“2”));

BinaryTree<String> fourTimesTwoPlusThree = new BinaryTree<String>

(“+”, fourTimesTwo, new BinaryTree<String>(“3”));

Expression Trees

Build using constructor
new BinaryTree<E>(value, leftSubTree, rightSubTree)

Expression Trees

• General strategy
• Make a binary tree (BT) for each leaf node

• Move from bottom to top, creating BTs

• Eventually reach the root
• Call “evaluate” on final BT

• Example
• How do we make a binary expression tree for

(((4+3)*(10-5))/2)
• Postfix notation: 4 3 + 10 5 - * 2 /

int evaluate(BinaryTree<String> expr) {

if (expr.height() == 0)
return Integer.parseInt(expr.value());

else {
int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case "+" : return left + right;
case "-" : return left - right;
case "*" : return left * right;
case "/" : return left / right;
}

Assert.fail("Bad op");
return -1;

}
}

Full vs. Complete (non-standard!)

• Full tree – A full binary
tree of height h has
leaves only on level h,
and each internal node
has exactly 2 children.

• Complete tree – A
complete binary tree of
height h is full to height h-1
and has all leaves at level h
in leftmost locations.

All full trees are complete, but not all complete trees are full!

Implementing BinaryTree

• BinaryTree<E> class
• Instance variables
• BinaryTree: parent, left, right
• E: value

• left and right are never null
• If no child, they point to an

“empty” tree
• Empty tree T has value null,

parent null, left = right = T

• Only empty tree nodes have
null value

parent
value

rightleft

EMPTY BT

null
null

thisthis

Implementing BinaryTree
• BinaryTree class
• Instance variables
• BT parent, BT left, BT right, E value

null
“*”

rightleft

EMPTY

parent
“4”

rightleft

EMPTY

parent
“2”

rightleft

EMPTY EMPTY

*

4 2

parent
value

rightleft

parent
value

rightleft

null
value

rightleft

parent
value

rightleft

parent
value

rightleft

EMPTY EMPTYEMPTY EMPTY

EMPTY parent
value

rightleft

EMPTY EMPTY

EMPTY != null!

A small tree

Implementing BinaryTree
• Many (!) methods: See BinaryTree javadoc page
• All “left” methods have equivalent “right” methods

• public BinaryTree()
• // generates an empty node (EMPTY)
• // parent and value are null, left=right=this

• public BinaryTree(E value)
• // generates a tree with a non-null value and two empty (EMPTY) subtrees

• public BinaryTree(E value, BinaryTree<E> left, BinaryTree<E> right)
• // returns a tree with a non-null value and two subtrees

• public void setLeft(BinaryTree<E> newLeft)
• // sets left subtree to newLeft
• // re-parents newLeft by calling newLeft.setParent(this)

• protected void setParent(BinaryTree<E> newParent)
• // sets parent subtree to newParent
• // called from setLeft and setRight to keep all “links” consistent

Implementing BinaryTree
• Methods:

• public BinaryTree<E> left()
• // returns left subtree

• public BinaryTree<E> parent()
• // post: returns reference to parent node, or null

• public boolean isLeftChild()
• // returns true if this is a left child of parent

• public E value()
• // returns value associated with this node

• public void setValue(E value)
• // sets the value associated with this node

• public int size()
• // returns number of (non-empty) nodes in tree

• public int height()
• // returns height of tree rooted at this node

• But where’s “remove” or “add”?!?!

BT Questions/Proofs

• Prove
• The number of nodes at depth 𝑛 is at most 2#

• The number of nodes in tree of height 𝑛 is at
most 2#$% − 1

• A tree with 𝑛 nodes has exactly 𝑛 − 1 edges

• The size() method works correctly
• The height() method works correctly
• The isFull() method works correctly

BT Questions/Proofs

Prove: Number of nodes at depth 𝑑 ≥ 0 is at most 2+

Idea: Induction on depth 𝑑 of nodes of tree

Base case: 𝑑 = 0: 1 node; 1 = 2-✓
Induction Hyp.: For some 𝑑 ≥ 0, there are at most 2+
nodes at depth 𝑑
Induction Step: Consider depth 𝑑 + 1. There are at
most 2 nodes at depth. 𝑑 + 1 for every node at depth
𝑑.

Therefore it has at most 2 ∗ 2+ = 2+$% nodes✓

BT Questions/Proofs

Prove that any tree on 𝑛 ≥ 1 nodes has 𝑛 − 1 edges
Idea: Induction on number of nodes

Base case: 𝑛 = 1. There are no edges✓
Induction Hyp: Assume that, for some 𝑛 ≥ 1, every
tree on 𝑛 nodes has exactly 𝑛 − 1 edges.

Induction Step: Let T have 𝑛 + 1 nodes. Show it has
exactly 𝑛 edges.

• Remove a leaf v (and its single edge) from T
• Now T has 𝑛 nodes, so it has 𝑛 − 1 edges
• Now add v (and its single edge) back, giving 𝑛 + 1

nodes and 𝑛 edges.

BT Questions/Proofs
Prove that BinaryTree method size() is correct.

• Let n be the number of nodes in the tree T

Base case: 𝑛 = 0. T is empty---size() returns 0✓
Induction Hyp: Assume size() is correct for all trees
having at most 𝑛 nodes.
Induction Step: Assume T has 𝑛 + 1 nodes
• Then left/right subtrees each have at most 𝑛 nodes

• So size() returns correct value for each subtree
• And the size of T is 1 + size of left subtree + size of

right subtree✓

Representing Knowledge

• Trees can be used to represent knowledge
• Example: InfiniteQuestions game

• We often call these trees decision trees
• Leaf: object

• Internal node: question to distinguish objects

• Move down decision tree until we reach a leaf node

• Check to see if the leaf is correct
• If not, add another question, make new and old objects

children

• Let’s look at the code…

Building Decision Trees

• Gather/obtain data
• Analyze data
• Make greedy choices: Find good questions that

divide data into halves (or as close as possible)

• Construct tree with shortest height
• In general this is a *hard* problem!
• Example

Representing Arbitrary Trees

• What if nodes can have many children?
• Example: Game trees

• Replace left/right node references with a list of
children (Vector, SLL, etc)
• Allows getting “ith” child

• Should provide method for getting degree of a
node

• Degree 0 = Empty list = No children = Leaf

