
CSCI 136
Data Structures &

Advanced Programming

Lecture 17
Fall 2019

Instructors: Bill & Sam

Administrative Details

• Lab 6: PostScript
• No partners this week
• Review before lab; come to lab with design doc

• Check out the javadoc pages for the 3 provided
classes
• Token – A wrapper for semantic PS elements,
• Reader – An iterator to produce a stream of Tokens

from standard input or a List of Tokens,

• SymbolTable – A dictionary with String keys and Token
values: For user-defined names

2

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~lenhart/cs136/javadoc/ps/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html

Last Time: Iterators & Ordered
Structures

• Iterators Continued
• Iterating over Iterators
• Ordered Structures: Preview

3

Today: Ordered Structures

• Lab 7 Discussion
• Ordered Structures:
• OrderedVector
• OrderedList

• Trees: Introduction

4

Lab 7: PostScript Interpreter
• PostScript is a stack-based programming language

• designed for vector graphics & printing

• Lab 7: Implement a small portion of a PS interpreter
• Read a stream of “tokens”

• Evaluate expressions using a stack
• Allow for creation of variables (and procedures!) using a

symbol table

• Provided:
• Reader, Token, and SymbolTable class

• You write an interpreter class

• Try out GhostScript: unix command: gs
• Type gs –dNODISPLAY to suppress graphics window

Lab 7: Concept Overview

• Basic input unit: the token: There are multiple types

• Number, Boolean, Symbol, Procedure (sorry, no Strings for us)

• Implemented with class Token

• A PostScript program is a sequence of tokens
• Tokens are processed as received

• Numbers, booleans, procedures go on stack

• A symbol should
– Be put on stack (if preceded by /), or

– Cause an operation to be performed if it is a built-in symbol (add, pstack, …), or
– Cause its value to be looked up in symbol table and appropriate action taken

• The SymbolTable class provides a symbol dictionry
• The Reader class provides an iterator for producing a stream of tokens

• Stream can come from standard input, a single Token, or a List of Tokens

• Your job: Write code to carry out the processing
• Driven by a method (you write) interpret(Reader r)

http://cs.williams.edu/~cs136/labs/javadoc/Token.html
http://cs.williams.edu/~cs136/labs/javadoc/SymbolTable.html
http://cs.williams.edu/~cs136/labs/javadoc/Reader.html

Lab 7: Suggested Approach

1. Read Lab handout and description in text carefully
2. Read the Javadoc pages for the 3 provided classes:

Using these classes well will help you a great deal!

3. Develop a plan. Here are some starting steps
1. Write your interpret method so that it just reads a token

stream from standard input and prints out each token.
2. Handle numbers, booleans, and pstack/pop operators

3. Follow the steps in the text in order

4. Debug as you go, use gs program to clarify expected
behavior

Ordered Structures

• Until now, we have not required a specific
ordering to the data stored in our structures
• If we wanted the data ordered/sorted, we had to

do it ourselves

• We often want to keep data ordered
• Allows for faster searching

• Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)

Ordering Structures

• The key to establishing order is being able to
compare objects

• We already know how to compare two
objects…how?

• Comparators and compare(T a, T b)
• Comparable interface and compareTo(T that)
• Two means to an end: which should we use?

BOTH!

Ordered Vectors
• We want to create a Vector that is always sorted

• When new elements are added, they are inserted into
correct position

• We still need the standard set of Vector methods
• add, remove, contains, size, iterator, …

• Two choices
• Extend Vector (as we did in sorting lab)
• Create new class

• Allows for more focused interface
• Can have a Vector as an instance variable
• Avoid corrupting order by controlled access to Vector

• We will implement a new class (OrderedVector)
• Start with Comparables
• Generalize to use Comparators instead of Comparables

OrderedVector Methods
public class OrderedVector<E extends Comparable<E>>
extends AbstractStructure<E> implements OrderedStructure<E>{
protected Vector<E> data;

public OrderedVector() {
data = new Vector<E>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

protected int locate(E value) {
//use modified binary search to find position of value
//if not found, returns position where add should occur
//uses iterative version of binary search (see text)
}

OrderedVector Methods
public boolean contains(E value) {

int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {
if (contains(value)) {

int pos = locate(value);
return data.remove(pos);

}
else return null;

}

Performance:
add - O(n)
contains - O(log n)
remove - O(n)

Adding Flexibility with Comparators

• We would like to be able to allow ordered
structures to use different orders

• Idea: Add constructor that has a Comparator
parameter

• Q: How does structure know whether to use
the Comparator or the Comparable ordering?

• A: The NaturalComparator class....

An Aside: Natural Comparators

• NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

}
}

Generalizing OrderedVector
public class OrderedVector<E extends Comparable<E>>

extends AbstractStructure<E> implements OrderedStructure<E> {
protected Vector<E> data;
protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector(Comparator<E> comp) {
data = new Vector<E>();
this.comp = comp;

}

protected int locate(E value) {
//use modified binary search to find position of value
//return position
//use comp.compare instead of compareTo

}

//rest stays same…

Ordered Lists

• Similar to OrderedVector
• Can’t quickly locate in SinglyLinkedList like

OrderedVector (Why?)
• So, we just build a SinglyLinkedList-like

structure
• add, contains, remove runtime?
• All O(n)…why?

OrderedList Methods
public class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements
OrderedStructure<E> {

protected Node<E> data; // smallest value
protected int count; // size of list
protected Comparator<? super E> ordering;

public OrderedList() {
this(new NaturalComparator<E>());

}
public OrderedList(Comparator<? super E> ordering){

this.ordering = ordering;
clear();

}

OrderedList Methods
public void clear() {

data = null;
count = 0;

}
public boolean contains(E value) {

Node<E> finger = data; // target

while ((finger != null) &&
ordering.compare(finger.value(),value)<0)

finger = finger.next();

return finger!=null && value.equals(finger.value());
}

What Could Go Wrong?

• Students compared to
each other by GPA

• Suppose next
semester I get a 3.7
and Jeannie gets a 3.3

OrderedVector

Duane
4.0

Jeannie
3.5

Sam
3.3

Students

What’s the problem?

• We have to recompute GPAs each semester
• What happens if the values are allowed to change?

• We may need to resort vector
• But since this isn’t part of the interface, it may be forgotten

• Options:
• Avoid changing values in OrderedStructures
• Incorporate an update method that repositions element

• Incorporate a resort() method
• This invites adding a “setComparator” method....

• Always update a value by removing and re-adding

Type Safety & Generic Types
• Question: Since String extends Object, does List<String> extend

List<Object>?
• I.e., can I say List<Object> = new List<String>()?

• No. It would compromise the type system:
List<String> slist = new List<String>();
List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

• It generates a compiler error.
• On the other hand…

String[] sa = {“I”, “love”, “java”, “!”};
Object[] oa = sa;
oa[1] = new Object()); // This would be bad!

• …actually compiles
• But causes a run-time error!

Introducing Trees

• Our structures have had a linear organization
• Stacks, queues
• Even ordered vectors, ordered lists, arrays,

vectors, lists are visualized linearly

• By linear we essentially mean that each
element has at most one successor and at
most one predecessor…

Branching Out: Trees

• A tree is a data structure where elements can
have multiple successors (called children)

• But still only one predecessor (called parent)

Root

Leaves

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

House of Normandy, Battle of Hastings, 1066

Tree Features

• Hierarchical relationship
• Root at the top

• Leaf at the bottom
• Interior nodes in middle
• Parents, children, ancestors, descendants, siblings
• Degree (of node): number of children of node

• Degree (of tree): maximum degree (across all nodes)
• Depth of node: number of edges from root to node
• Height of tree: maximum depth (across all nodes)

Other Trees

• Phylogenetic tree
• Directories of files
• Game trees
• Build a tree
• Search it for moves with high likelihood of

winning

• Expression trees

~lenhart

www

index.html cs136

lectures.html handouts.html

research papers

... ...
cs356T

+

*

4 2

3
4 * 2 + 3

Expression Trees

*

4 2

3
-

10 2

4

+

+ /

(4 * 2 + 3) + ((10 – 2)/ 4)

Introducing Binary Trees

• Degree of all nodes <= 2
• Recursive definition
• A binary tree is either:
• Empty, or
• Root with left and right subtrees

• SLL: Recursive nature was captured by nodes
(Node<E>) on inside

• Binary Tree: No “inner” node class; single
BinaryTree class does it all

+

*

4 2

3
4 * 2 + 3

BinaryTree<String> fourTimesTwo =
new BinaryTree<String>(“*”,
new BinaryTree<String>(“4”),
new BinaryTree<String>(“2”));

BinaryTree<String> fourTimesTwoPlusThree =
new BinaryTree<String>(“+”,
fourTimesTwo,
new BinaryTree<String>(“3”));

Expression Trees

Or use Token class!

Expression Trees

• General strategy
• Make a binary tree (BT) for each leaf node

• Move from bottom to top, creating BTs

• Eventually reach the root
• Call “evaluate” on final BT

• Example
• How do we make a binary expression tree for

(((4+3)*(10-5))/2)
• Postfix notation: 4 3 + 10 5 - * 2 /

int evaluate(BinaryTree<String> expr) {
if (expr.height() == 0)

return Integer.parseInt(expr.value());
else {

int left = evaluate(expr.left());
int right = evaluate(expr.right());
String op = expr.value();
switch (op) {

case "+" : return left + right;
case "-" : return left - right;
case "*" : return left * right;
case "/" : return left / right;

}

Assert.fail("Bad op");
return -1;

}
}

