CSCI 136
Data Structures &
Advanced Programming

Lecture 16

Fall 2019
Instructor: B&S

Last Time: Queues & lterators

e Stacks
 (Implicit) program call stack

e Queues
* Implementations Details
* Applications

This Time: Iterators & Ordered
Structures

* |terators

* The goal: Efficient and uniform dispensing of values
from data structures

* The solution: The lterator interface

* |terators as dispensers and as generators

* |terating over lterators

* The Iterable interface : Using iterators with for-each

e Ordered Structures : Introduction

Visiting Data from a Structure

* Write a method (numOccurs) that counts the
number of times a particular Object appears
In a structure

public int numOccurs (List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(1i);
if (obj.equals(o)) count++;
}

return count;

}
e Does this work on all structures (that we
have studied so far)?

Problems

e get() not defined on Linear structures (i.e.,
stacks and queues)

* get() is “slow on some structures
 O(n) on SLL (and DLL)

* So numOccurs = O(n?) for linked lists

* How do we traverse data in structures in a
general, efficient way!?

e Goal: data structure-specific for efficiency

* Goal: use same interface to make general

Recall : Structure Operations

size()
1sEmpty ()
add ()
remove ()
clear()
contains|()

But also

e Method for efficient data traversal
e iterator ()

lterators

e Iterators provide support for efficiently visiting all
elements of a data structure

e An lterator:

* Provides generic methods to dispense values for

* Traversal of elements : Iteration
* Production of values : Generation

e Abstracts away details of how to access elements
e Uses different implementations for each structure

public interface Iterator<iE> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e It throws an UnsupportedOperationException exception

A Simple lterator

e Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;

int temp = current;

current = next;

next = temp + current;

return temp;

Why Is This Cool? (it is)

e We could calculate the it Fibonacci number
each time, but that would be slow

e Observation: to find the n Fib number, we
calculate the previous n-1 Fib numbers...

* But by storing some state, we can easily generate
the next Fib number in O(I) time

* Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time

e Let’s do the same for data structures

lterators Of Structures

Goal: Have data structures produce iterators that
return the values of the structure in some order.

How!?

* Define an iterator class for the structure, e.g.

public class VectorIterator<ge>
implements Iterator<g>;

public class SinglyLinkedListIterator<gE>
implements Iterator<g>;

* Provide a method in the structure that

returns an iterator
public Iterator<E> iterator(){ .. }

lterators Of Structures

The details of hasNext() and next() depend on the
specific data structure, e.g.

* Vectorlterator holds an array reference and index of
next element
* A reference to the data array of the Vector
e The index of the next element whose value to return
 SinglyLinkedListlterator holds
e a reference to the head of the list
e A reference to the next node whose value to return

Iterator Use : numO-ccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;

for(Iterator<E> 1 = data.iterator());
i.hasNext();)
if(o.equals(i.next())) count++;

return count;

Implementation Details

We use both the Iterator interface and the
Abstractlterator class

All concrete implementations in structure5 extend
Abstractlterator

e Abstractlterator partially implements Iterator
Importantly, Abstractlterator adds two methods

» get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for specific data structures

Iterator Use : numO-ccurs

Using an Abstractlterator allows more flexible coding
(but requiring a cast to Abstractlterator)

Note: Can now write a ‘standard’ 3-part for statement

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<gE> i =
(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())
if(o.equals(i.get())) count++;
return count;

Implementation : SLLIterator

public class SinglyLinkedListIterator<E> extends AbstractIterator<iE> {
protected Node<E> head, current;

public SinglyLinkedListIterator (Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}
public boolean hasNext() { return current != null; }
public E get() { return current.value(); }

In SinglyLinkedList.java:

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

More lterator Examples

* How would we implement Vectorlterator?

* Do we store the Vector or the underlying array!?

* How about StackArraylterator?
* Do we go from bottom to top, or top to bottom!?

* Doesn’t matter! We just have to be consistent...

* We can also make “specialized” iterators
 Skiplterator.java
* next() post-work: skip elts until new next found

* Reverselterator.java

* A massive cheat!

 EvenFib.java

lterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop
for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

Why did that work?!
List provides an iterator() method and...

The Iterable Interface

We can use the “for-each” construct...
for(E elt : boxOfStuff) { ... }

...as long as boxOfStuff implements the lterable interface

public interface Iterable<T>
public Iterator<T> iterator();

Duane’s Structure interface extends lterable, so we can use it;

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

General Rules for lterators

|. Understand order of data structure
2. Always call hasNext() before calling next()!!!

3. Use remove with caution!

. [Opinion: Don’t use remove....]
4. Don’t add to structure while iterating: Testlterator.java
 Take away messages:

e Iterator objects capture state of traversal

* They have access to internal data representations

* They should be fast and easy to use

Ordered Structures

e Until now, we have not required a specific
ordering to the data stored in our structures

e If we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

* Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)

Ordering Structures

The key to establishing order is being able to
compare objects

We already know how to compare two
objects...how!

Comparators and compare(T a, T b)
Comparable interface and compareTo(T that)

Two means to an end: which should we use?

BOTH!

Ordered Vectors

* We want to create a Vector that is always sorted

* When new elements are added, they are inserted into
correct position

* We still need the standard set of Vector methods

* add, remove, contains, size, iterator, ...

e Two choices

e Extend Vector (as we did in sorting lab)

e Create new class

* Allows for more focused interface
* Can have a Vector as an instance variable
e Avoid corrupting order by controlled access to Vector

* We will implement a new class (OrderedVector)

e Start with Comparables
e Generalize to use Comparators instead of Comparables

OrderedVector Methods

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<E> {
protected Vector<E> data;

public OrderedVector() {
data = new Vector<iE>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

protected int locate(E value) {

//use modified binary search to find position of wvalue
//if not found, returns position where add should occur
//uses iterative version of binary search (see text)

}

OrderedVector Methods

public boolean contains(E value) {
int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {
if (contains(value)) {
int pos = locate(value);
return data.remove(pos);

}

else return null;
}
Performance:

add - O(n)
contains - O(log n)
remove - O(n)

Adding Flexibility with Comparators

* We would like to be able to allow ordered
structures to use different orders

* |dea: Add constructor that has a Comparator
parameter

e Q: How does structure know whether to use
the Comparator or the Comparable ordering?

* A: The NaturalComparator class....

An Aside: Natural Comparators

* NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<iE> {

public int compare(E a, E b) {
return a.compareTo(b);

Generalizing OrderedVector

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<kE> {
protected Vector<E> data;
protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector (Comparator<kE> comp) {
data = new Vector<E>();
this.comp = comp;

}

protected int locate(E value) {
//use modified binary search to find position of value
//return position
//use comp.compare instead of compareTo

}

//rest stays same..

Ordered Lists

Similar to OrderedVector

Can’t easily use SinglyLinkedList like
OrderedVector used Vector (Why?)

So, we just build a SinglyLinkedList-like
structure

add, contains, remove runtime?
e All O(n)...why!?

OrderedList Methods

public class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements
OrderedStructure<iE> {

protected Node<E> data; // smallest value
protected int count; // size of list

protected Comparator<? super E> ordering;

public OrderedList() {
this(new NaturalComparator<E>());

}

public OrderedList (Comparator<? super E> ordering){
this.ordering = ordering;
clear();

OrderedList Methods

public void clear() {
data = null;
count = 0;

}

public boolean contains(E value) {
Node<E> finger = data; // target

while ((finger != null) &&
ordering.compare(finger.value(),value)<0)

finger = finger.next();

return finger!=null && value.equals(finger.value());

What Could Go Wrong!?

OrderedVector

—

/

Students

Duane

4.0

Jeannie

3.5

Sam

3.3

e Students compared to
each other by GPA

* Suppose next
semester | geta 3.7
and Jeannie gets a 3.3

What's the problem!?

We have to recompute GPAs each semester
What happens if the values are allowed to change?

We may need to resort vector

e But since this isn’t part of the interface, it may be forgotten
Options:

* Avoid changing values in OrderedStructures

* Incorporate an update method that repositions element

* Incorporate a resort method

e This invites adding a “setComparator” method....

e Always update a value by removing and re-adding

Type Safety & Generic Types

Question: Since String extends Object, does List<String> extend
List<Object>?

* l.e, can | say List<Object> = new List<String>()?

No. It would compromise the type system:

List<String> slist = new List<String>();

List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

It generates a compiler error.
On the other hand...

String[] sa = {”1I”, *“love”, *“java”, “!"};
Object[] oa = sa;

oa[l] = new Object()); // This would be bad!
...actually compiles

e But causes a run-time error!

