
CSCI 136
Data Structures &

Advanced Programming

Lecture 15
Fall 2019

Instructor: Bill & Sam

Announcements

• Mid-Term Review Session
• Monday Oct. 14 from 9:00-11:00 am
• No prepared remarks, so bring questions!

• Mid-term exam is Wednesday, October17
• During your normal lab session
• You’ll have 1 hour & 45 minutes (if you come on time!)
• Closed-book
• Covers Chapters 1-7 & 9 and all topics up through Linked

Lists
• A “sample” mid-term and study sheet are available online

• See Handouts & Problem Sets

2

http://cs.williams.edu/~cs136/handouts+problems.html

Announcements: Office Hours

• New hours available on GLOW

• Change in TA hours (see email)

• No TA hours from Wednesday-Sunday next week
after midterm

3

Announcements

• Lab 2 back (check), PS1 back now

• Lab 3 back soon (just finishing up)

• Lab 4 back with time to review before midterm

• PS2 hopefully back soon
• may need to pick up from my office if Mountain Day

4

Last Time : Linear Structures

• Stack applications
• Arithmetic Expressions
• Postscript
• Mazerunning (Depth-First-Search)

5

Today: Linear Structures

• Stacks
• (Implicit) program call stack

• Queues
• Implementations Details
• Applications

• Iterators

6

Mazes

• How can we use a stack to solve a maze?
• http://www.primaryobjects.com/maze/

• Properties of mazes:
• We model a maze as a rectangular grid of cells

• There is a start cell and one or more finish cells
• Goal: Find path of adjacent free cells from start to finish

• Strategy: Consider unvisited cells as “potential tasks”
• Use linear structure (stack) to keep track of current path

being explored

http://www.primaryobjects.com/maze/

Solving Mazes

• We’ll use two objects to solve our maze:
• Position: Info about a single cell
• Maze: Grid of Positions

• General strategy:
• Use stack to keep track of path from start
• If we hit a dead end, backtrack by popping

location off stack
• Mark discarded cells to make sure we don’t visit

the same paths twice

Backtracking Search

• Try one way (favor north and east)
• If we get stuck, go back and try a different way
• We will eventually either find a solution or

exhaust all possibilities

• Also called a “depth first search”

• Lots of other algorithms that we will not
explore: http://www.astrolog.org/labyrnth/algrithm.htm

http://www.astrolog.org/labyrnth/algrithm.htm

A “Pseudo-Code” Sketch
// Initialization

Read cell data (free/blocked/start/finish) from file data
Mark all free cells as unvisited

Create an empty stack S
Mark start cell as visited and push it onto stack S

While (S isn’t empty && top of S isn’t finish cell)

current ß S.peek() // current is top of stack
If (current has an unvisited neighbor x)

Mark x as visited ; S.push(x) // x is explored next
Else S.pop()

If finish is on top of S then success else no solution

Is Pseudo-Code Correct?
• Tools

• Concepts: adjacent cells; path; simple path; path length;
shortest path; distance between cells; reachable from cell

• Solving a maze: is finish reachable from start?

• Theorem: The pseudo-code will either visit finish or
visit every free cell reachable from start

• Proof: Prove that if algorithm does not visit finish then it
does visit every free cell reachable from start
• Do this by induction on distance of free cell from start

• Base case: distance 0. Easy
• Induction: Assume every reachable free cell of distance at

most k ≥ 0 from start is visited. Prove for k+1

Is Pseudo-Code Correct?
• Induction Hyp: Assume every reachable free cell of

distance at most k ≥ 0 from start is visited.
• Induction Step: Prove that every reachable free cell

of distance k+1 from start is visited.
• Let c be a free cell of distance k+1 reachable from start
• Then c has a free neighbor d that is distance k from start

and reachable from start

• But then by induction, d is visited, so it was put on stack
• So each free neighbor of d is visited by algorithm

• Done!

Recursive “Pseudo-Code” Sketch
Boolean RecSolve(Maze m, Position current)

If (current equals finish) return true
Mark current as visited

next ß some unvisited neighbor of current (or null if none
left)
While (next does not equal null && recSolve(m, next) is
false)

nextß an unvisited neighbor of current (null if none left)

Return next != null
• To solve maze, call: Boolean recSolve(m, start)
• To prove correct: Induction on distance from current to

finish
• How could we generate the actual solution?

Implementing A Maze Solver

• Iteratively: Maze.java
• Recursively: RecMaze.java
• Recursive method keeps an implicit stack

• The method call stack

• Each recursive call adds to the stack

Implementation: Position class

• Represent position in maze as (x,y) coordinate
• class Position has several relevant methods:

• Find a neighbor
• Position getNorth(), getSouth(), getEast(),
getWest()

• boolean equals()

• Check states of position
• boolean isVisited(), isOpen()

• Set states of position
• void visit(), setOpen(boolean b)

Maze class
• Relevant Maze methods:

• Maze(String filename)
• Constructor; takes file describing maze as input

• void visit(Position p)

• Visit position p in maze
• boolean isVisited(Position p)

• Returns true iff p has been visited before
• Position start(), finish()

• Return start /finish positions
• Position nextAdjacent(Position p)

• Return next unvisited neighbor of p---or null if none
• boolean isClear(Position p)

• Returns true iff p is a valid move and is not a wall

Method Call Stacks
• In JVM, need to keep track of method calls
• JVM maintains stack of method invocations (called

frames)
• Stack of frames

• Receiver object, parameters, local variables

• On method call
• Push new frame, fill in parameters, run code

• Exceptions print out stack
• Example: StackEx.java
• Recursive calls recurse too far: StackOverflowException

• Overflow.java

Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Methods: push, pop, peek, empty

• Sample Uses:
• Evaluating expressions (postfix)

• Solving mazes
• Evaluating postscript
• JVM method calls

• Queues are FIFO (First In First Out)
• Another linear data structure (implements Linear interface)

• Queue interface methods: enqueue (add), dequeue (remove),
getFirst (get), peek (get)

tail head

Queues

• Examples:
• Lines at movie theater, grocery store, etc

• OS event queue (keeps keystrokes, mouse clicks,
etc, in order)

• Printers

• Routing network traffic (more on this later)

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek(); //same as getFirst()

}

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t declare E[]
int head;
int count; // better than storing tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {

protected Vector<E> data;
}

QueueList
class QueueList<E> implements Queue<E> {

protected List<E> data; //uses a CircularList
}

All three of these also extend AbstractQueue

QueueArray

• Let’s look at an example…
• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)
head points to front of

queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

After wrap around,
head > tail in some

cases!

public class queueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public queueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count<data.length,”Queue is full.");
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
Assert.pre(count>0,"The queue is empty.");
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}

Tradeoffs:

• QueueArray:
• enqueue is O(1)
• dequeue is O(1)
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1) (but O(n) in worst case - ensureCapacity)
• dequeue is O(n)

• QueueList:
• enqueue is O(1) (addLast)
• dequeue is O(1) (CLL removeFirst)

Routing With Queues

Slides by Stephen Freund

The Network

moo.cs.williams.edu
(137.165.8.3) Network

www.google.com
(216.239.37.99)

137.165.8.3 216.239.37.99 "Search for ..."Message:

Routers

moo
(137.165.8.3)

www.google.com
(216.239.37.99)

137.165.8.3 216.239.37.99 "Search for ..."Message:

R1

R2

R3

R4

Routers

moo
(137.165.8.3)

google
(216.239.37.99)

R1

R2

R3

R4

Routing Algorithm
1. Receive message
2. Look up Destination Address

a) Deliver message to Dest
b) Forward to next Router

Router Internals

R1

R4

Lookup
Dest Addr

137.165.8.3 R1
216.239.37.99

R4
...

...

R1

R4

R2

Buffering Messages

• There may be delays
• Router receives messages faster than it can

process and send
• Some links are slower than others

• Common speeds: 10 Mbs, 100Mbs, 1Gbs.

• Wireless, satellite, infra-red, telephone line, ...

• Hardware problems

• Want to be able to handle short-term
congestion problems

Router Internals

R1

R4

Lookup
Dest Addr

R1

R4

137.165.8.3 R1
216.239.37.99

R4
...

...

Firewalls

R1

R4

Lookup
Dest Addr

R1

R4

good

bad discard

Check Source

Priority Scheduling

R1

R4

Lookup
Dest Addr

high

med

low

Priority of
Source/Dest

70%

20%

10%

Scheduler

Bandwidth Shaper

R1

R4

Lookup
Dest Addr

music

other

Classify
Message Scheduler

Limit(100)

Choosing The Best Route

moo
(137.165.8.3)

google
(216.239.37.99)

R1

R2

R3

R4

Choosing Routes

• Routers exchange information periodically
• Attempt to route on "best" path to destination
• Not easy to determine:

• Network congestion varies (evening vs. morning)
• Hardware added/removed or failures

• Dijkstra's algorithm (later)

Visiting Data from a Structure

• Write a method (numOccurs) that counts the
number of times a particular Object appears
in a structure

• Does this work on all structures (that we
have studied so far)?

public int numOccurs (List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {

E obj = data.get(i);
if (obj.equals(o)) count++;

}
return count;

}

Problems

• get(int) not defined on Linear structures (i.e.,
stacks and queues)

• get(int) is “slow” on some structures
• O(n) on SLL (and DLL)

• So numOccurs = O(n2) for linked lists

• How do we traverse data in structures in a
general, efficient way?
• Goal: data structure-specific for efficiency
• Goal: use same interface to make general

Recall : Structure Operations

• size()
• isEmpty()
• add()
• remove()
• clear()
• contains()

• But also
• Method for efficient data traversal

• iterator()

Iterators
• Iterators provide support for efficiently visiting all

elements of a data structure
• An Iterator:

• Provides generic methods to dispense values
• Traversal of elements : Iteration
• Production of values : Generation

• Abstracts away details of how elements are retrieved
• Uses different implementations for each structure

public interface Iterator<E> {
boolean hasNext() – are there more elements in iteration?
E next() – return next element
default void remove() – removes most recently returned value

• Default : Java provides an implementation for remove
• It throws an UnsupportedOperationException exception

Iterators Of Structures
Goal: Have data structures produce iterators that
return the values of the structure in some order.
How?

• Define an iterator class for the structure, e.g.
public class VectorIterator<E>

implements Iterator<E>;
public class SinglyLinkedListIterator<E>

implements Iterator<E>;

• Provide a method in the structure that
returns an iterator

public Iterator<E> iterator(){ … }

Iterators Of Structures
The details of hasNext() and next() depend on the
specific data structure, e.g.
• VectorIterator holds an array reference and index of

next element
• A reference to the data array of the Vector
• The index of the next element whose value to return

• SinglyLinkedListIterator holds
• a reference to the head of the list
• A reference to the next node whose value to return

Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())

if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;
for(Iterator<E> i = data.iterator()); i.hasNext();)

if(o.equals(i.next())) count++;
return count;

}

Implementation Details

• We use both an Iterator interface and an
AbstractIterator class

• All concrete classes in structure5 extend
AbstractIterator
• AbstractIterator partially implements Iterator

• Importantly, AbstractIterator adds two methods
• get() – peek at (but don’t take) next element, and
• reset() – reinitialize iterator for reuse

• Methods are specialized for each data structure

Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<E> i =

(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())

if(o.equals(i.get())) count++;
return count;

}

Using an AbstractIterator allows more flexible coding
(but requiring a cast to AbstractIterator)

Note: It has the form of a standard 3-part for statement

public class SinglyLinkedListIterator<E> extends AbstractIterator<E> {

protected Node<E> head, current;

public SinglyLinkedListIterator(Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}

public boolean hasNext() { return current != null; }

public E get() { return current.value(); }
}

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

In SinglyLinkedList.java:

Implementation : SLLIterator

More Iterator Examples

• How would we implement VectorIterator?
• How about StackArrayIterator?
• Do we go from bottom to top, or top to bottom?
• Doesn’t matter! We just have to be consistent…

• We can also make “specialized” iterators
• Another SLL Example: SkipIterator.java
• ReverseIterator.java

Iterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop

for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {

int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can do this with classes that provide an iterator() method…

The Iterable Interface

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can use the “for-each” construct…

for(E elt : boxOfStuff) { ... }

…as long as boxOfStuff implements the Iterable interface

public interface Iterable<T> {
public Iterator<T> iterator();

}

Since Structure<E> extends Iterable<E>, we can write

General Rules for Iterators

1. Understand order of data structure
2. Always call hasNext() before calling next()!!!
3. Use remove with caution!

** Don’t use remove….

4. Don’t add to structure while iterating: TestIterator.java

• Take away messages:
• Iterator objects capture state of traversal

• They have access to internal data representations
• They should be fast and easy to use

A Fun Use of Iterators
• Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;
int temp = current;
current = next;
next = temp + current;
return temp;

}

}

Why Is This Cool? (it is)

• We could calculate the ith Fibonacci number
each time, but that would be slow
• Observation: to find the nth Fib number, we

calculate the previous n-1 Fib numbers…
• But by storing some state, we can easily generate

the next Fib number in O(1) time

• Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time
• Let’s do the same for data structures

