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Announcements

• Mid-Term Review Session
• Monday Oct. 14 from 9:00-11:00 am
• No prepared remarks, so bring questions!

• Mid-term exam is Wednesday, October17
• During your normal lab session
• You’ll have 1 hour & 45 minutes (if you come on time!)
• Closed-book
• Covers Chapters 1-7 & 9 and all topics up through Linked 

Lists
• A “sample” mid-term and study sheet are available online

• See Handouts & Problem Sets
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http://cs.williams.edu/~cs136/handouts+problems.html


Announcements: Office Hours

• New hours available on GLOW

• Change in TA hours (see email)

• No TA hours from Wednesday-Sunday next week 
after midterm
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Announcements

• Lab 2 back (check), PS1 back now

• Lab 3 back soon (just finishing up)

• Lab 4 back with time to review before midterm

• PS2 hopefully back soon 
• may need to pick up from my office if Mountain Day
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Last Time : Linear Structures

• Stack applications
• Arithmetic Expressions
• Postscript
• Mazerunning (Depth-First-Search)
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Today: Linear Structures

• Stacks
• (Implicit) program call stack

• Queues
• Implementations Details
• Applications

• Iterators
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Mazes

• How can we use a stack to solve a maze?
• http://www.primaryobjects.com/maze/

• Properties of mazes:
• We model a maze as a rectangular grid of cells 

• There is a start cell and one or more finish cells
• Goal: Find path of adjacent free cells from start to finish

• Strategy: Consider unvisited cells as “potential tasks”
• Use linear structure (stack) to keep track of current path 

being explored

http://www.primaryobjects.com/maze/


Solving Mazes

• We’ll use two objects to solve our maze:
• Position: Info about a single cell
• Maze: Grid of Positions

• General strategy:
• Use stack to keep track of path from start
• If we hit a dead end, backtrack by popping 

location off stack
• Mark discarded cells to make sure we don’t visit 

the same paths twice



Backtracking Search

• Try one way (favor north and east)
• If we get stuck, go back and try a different way
• We will eventually either find a solution or 

exhaust all possibilities

• Also called a “depth first search”

• Lots of other algorithms that we will not 
explore: http://www.astrolog.org/labyrnth/algrithm.htm

http://www.astrolog.org/labyrnth/algrithm.htm


A “Pseudo-Code” Sketch
// Initialization

Read cell data (free/blocked/start/finish) from file data
Mark all free cells as unvisited

Create an empty stack S
Mark start cell as visited and push it onto stack S

While (S isn’t empty && top of S isn’t finish cell)

current ß S.peek() // current is top of stack
If (current has an unvisited neighbor x)

Mark x as visited ; S.push(x) // x is explored next
Else S.pop()

If finish is on top of S then success else no solution



Is Pseudo-Code Correct?
• Tools

• Concepts: adjacent cells; path; simple path; path length; 
shortest path; distance between cells; reachable from cell

• Solving a maze: is finish reachable from start?

• Theorem: The pseudo-code will either visit finish or 
visit every free cell reachable from start

• Proof: Prove that if algorithm does not visit finish then it 
does visit every free cell reachable from start
• Do this by induction on distance of free cell from start

• Base case: distance 0. Easy
• Induction: Assume every reachable free cell of distance at 

most k ≥ 0 from start is visited.  Prove for k+1



Is Pseudo-Code Correct?
• Induction Hyp: Assume every reachable free cell of 

distance at most k ≥ 0 from start is visited.
• Induction Step: Prove that every reachable free cell 

of distance k+1 from start is visited.
• Let c be a free cell of distance k+1 reachable from start
• Then c has a free neighbor d that is distance k from start 

and reachable from start

• But then by induction, d is visited, so it was put on stack
• So each free neighbor of d is visited by algorithm

• Done!



Recursive “Pseudo-Code” Sketch
Boolean RecSolve(Maze m, Position current)

If  (current equals finish) return true
Mark current as visited

next ß some unvisited neighbor of current (or null if none 
left)
While (next does not equal null && recSolve(m, next) is 
false)

nextß an unvisited neighbor of current (null if none left)

Return next != null
• To solve maze, call:  Boolean recSolve(m, start)
• To prove correct: Induction on distance from current to 

finish
• How could we generate the actual solution?



Implementing A Maze Solver

• Iteratively: Maze.java
• Recursively: RecMaze.java
• Recursive method keeps an implicit stack

• The method call stack

• Each recursive call adds to the stack



Implementation: Position class

• Represent position in maze as (x,y) coordinate
• class Position has several relevant methods:

• Find a neighbor
• Position getNorth(), getSouth(), getEast(), 
getWest()

• boolean equals()

• Check states of position
• boolean isVisited(), isOpen()

• Set states of position
• void visit(), setOpen(boolean b)



Maze class
• Relevant Maze methods:

• Maze(String filename)
• Constructor; takes file describing maze as input 

• void visit(Position p)

• Visit position p in maze
• boolean isVisited(Position p)

• Returns true iff p has been visited before
• Position start(), finish()

• Return start /finish positions
• Position nextAdjacent(Position p)

• Return next unvisited neighbor of p---or null if none
• boolean isClear(Position p)

• Returns true iff p is a valid move and is not a wall



Method Call Stacks
• In JVM, need to keep track of method calls
• JVM maintains stack of method invocations (called 

frames)
• Stack of frames

• Receiver object, parameters, local variables

• On method call
• Push new frame, fill in parameters, run code

• Exceptions print out stack
• Example: StackEx.java
• Recursive calls recurse too far: StackOverflowException

• Overflow.java



Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Methods: push, pop, peek, empty

• Sample Uses:
• Evaluating expressions (postfix)

• Solving mazes
• Evaluating postscript
• JVM method calls

• Queues are FIFO (First In First Out)
• Another linear data structure (implements Linear interface)

• Queue interface methods: enqueue (add), dequeue (remove), 
getFirst (get), peek (get)



tail head

Queues

• Examples:
• Lines at movie theater, grocery store, etc

• OS event queue (keeps keystrokes, mouse clicks, 
etc, in order)

• Printers

• Routing network traffic (more on this later)



Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek();  //same as getFirst()

}



Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t declare E[]
int head; 
int count; // better than storing tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {

protected Vector<E> data;
}

QueueList
class QueueList<E> implements Queue<E> {

protected List<E> data; //uses a CircularList
}

All three of these also extend AbstractQueue



QueueArray

• Let’s look at an example…
• How to implement?
• enqueue(item), dequeue(), size()

tailhead
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queue; tail points to next 
empty space (where next 

item will be added)

head and tail “wrap 
around” array; 

when queue is full, 
head == tail

After wrap around, 
head > tail in some 

cases!



public class queueArray<E> { 

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public queueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count<data.length,”Queue is full.");
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
Assert.pre(count>0,"The queue is empty.");
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}



Tradeoffs:

• QueueArray:
• enqueue is O(1)
• dequeue is O(1)
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1) (but O(n) in worst case - ensureCapacity)
• dequeue is O(n)

• QueueList:
• enqueue is O(1) (addLast)
• dequeue is O(1) (CLL removeFirst)



Routing With Queues

Slides by Stephen Freund



The Network
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Routers
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Routers
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Routing Algorithm
1. Receive message
2. Look up Destination Address

a) Deliver message to Dest
b) Forward to next Router



Router Internals
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Buffering Messages

• There may be delays
• Router receives messages faster than it can 

process and send
• Some links are slower than others 

• Common speeds: 10 Mbs, 100Mbs, 1Gbs.

• Wireless, satellite, infra-red, telephone line, ...

• Hardware problems

• Want to be able to handle short-term 
congestion problems
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Firewalls
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Priority Scheduling
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Choosing The Best Route
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Choosing Routes

• Routers exchange information periodically
• Attempt to route on "best" path to destination
• Not easy to determine:

• Network congestion varies (evening vs. morning)
• Hardware added/removed or failures

• Dijkstra's algorithm (later)



Visiting Data from a Structure

• Write a method (numOccurs) that counts the 
number of times a particular Object appears 
in a structure

• Does this work on all structures (that we 
have studied so far)?

public int numOccurs (List data, E o) {
int count = 0;     
for (int i=0; i<data.size(); i++) {

E obj = data.get(i);
if (obj.equals(o)) count++;

}
return count;

}



Problems

• get(int) not defined on Linear structures (i.e., 
stacks and queues)

• get(int) is “slow” on some structures
• O(n) on SLL (and DLL)

• So numOccurs = O(n2) for linked lists

• How do we traverse data in structures in a 
general, efficient way?
• Goal: data structure-specific for efficiency
• Goal: use same interface to make general



Recall : Structure Operations

• size()
• isEmpty()
• add()
• remove()
• clear()
• contains()

• But also
• Method for efficient data traversal

• iterator()



Iterators
• Iterators provide support for efficiently visiting all 

elements of a data structure 
• An Iterator:

• Provides generic methods to dispense values
• Traversal of elements : Iteration
• Production of values : Generation

• Abstracts away details of how elements are retrieved
• Uses different implementations for each structure

public interface Iterator<E> {
boolean hasNext() – are there more elements in iteration?
E next() – return next element
default void remove() – removes most recently returned value

• Default : Java provides an implementation for remove
• It throws an UnsupportedOperationException exception



Iterators Of Structures
Goal: Have data structures produce iterators that 
return the values of the structure in some order.
How?

• Define an iterator class for the structure, e.g.
public class VectorIterator<E>

implements Iterator<E>;
public class SinglyLinkedListIterator<E>

implements Iterator<E>;

• Provide a method in the structure that 
returns an iterator

public Iterator<E> iterator(){ … }



Iterators Of Structures
The details of hasNext() and next() depend on the 
specific data structure, e.g.
• VectorIterator holds an array reference and index of 

next element
• A reference to the data array of the Vector
• The index of the next element whose value to return

• SinglyLinkedListIterator holds
• a reference to the head of the list
• A reference to the next node whose value to return



Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())

if(o.equals(iter.next())) count++;
return count;

}   
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;
for(Iterator<E> i = data.iterator()); i.hasNext();)

if(o.equals(i.next())) count++;
return count;

}



Implementation Details

• We use both an Iterator interface and an 
AbstractIterator class

• All concrete classes in structure5 extend 
AbstractIterator
• AbstractIterator partially implements Iterator

• Importantly, AbstractIterator adds two methods
• get() – peek at (but don’t take) next element, and
• reset() – reinitialize iterator for reuse

• Methods are specialized for each data structure



Iterator Use : numOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<E> i =

(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())

if(o.equals(i.get())) count++;
return count;

}

Using an AbstractIterator allows more flexible coding
(but requiring a cast to AbstractIterator)

Note: It has the form of a standard 3-part for statement



public class SinglyLinkedListIterator<E> extends AbstractIterator<E> {

protected Node<E> head, current;

public SinglyLinkedListIterator(Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}

public boolean hasNext() { return current != null; }

public E get() { return current.value(); }
}

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

In SinglyLinkedList.java:

Implementation : SLLIterator



More Iterator Examples

• How would we implement VectorIterator?
• How about StackArrayIterator?
• Do we go from bottom to top, or top to bottom?
• Doesn’t matter!  We just have to be consistent…

• We can also make “specialized” iterators
• Another SLL Example: SkipIterator.java
• ReverseIterator.java



Iterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop

for( E elt : arr) {System.out.println( elt );}

Or,  for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {

int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can do this with classes that provide an iterator() method…



The Iterable Interface

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)

if(o.equals(current)) count++;
return count;

}

We can use the “for-each” construct…

for( E elt : boxOfStuff ) { ... }

…as long as boxOfStuff implements the Iterable interface

public interface Iterable<T> {
public Iterator<T> iterator();

}

Since Structure<E> extends Iterable<E>, we can write



General Rules for Iterators

1. Understand order of data structure
2. Always call hasNext() before calling next()!!!
3. Use remove with caution!

** Don’t use remove….

4. Don’t add to structure while iterating: TestIterator.java

• Take away messages:
• Iterator objects capture state of traversal

• They have access to internal data representations
• They should be fast and easy to use



A Fun Use of Iterators
• Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10;  // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;
int temp = current;
current = next;
next = temp + current;
return temp;

}

}



Why Is This Cool? (it is)

• We could calculate the ith Fibonacci number 
each time, but that would be slow
• Observation: to find the nth Fib number, we 

calculate the previous n-1 Fib numbers…
• But by storing some state, we can easily generate 

the next Fib number in O(1) time

• Knowledge about the structure of the 
problem helps us traverse the Fib space 
efficiently one element at a time
• Let’s do the same for data structures


