CSCI 136
Data Structures &
Advanced Programming

Lecture |5

Fall 2019
Instructor: B&S

Announcements

e Mid-Term Review Session

* Monday, Oct. 14 from 9:00-11:00 am
* No prepared remarks, so bring questions!

e Mid-term exam is VWednesday, October|6
* During your normal lab session
e You'll have | hour & 45 minutes (if you come on time!)
e Closed-book

e Covers Chapters |-7 & 9 and all topics up through Linked
Lists

A “sample” mid-term and study sheet are available online

https://williams-cs.github.io/cs136-f19-www/handouts+problems.html

Last Time : Linear Structures

* Stack applications
* Arithmetic Expressions
* Postscript
e Mazerunning (Depth-First-Search)

Today: Linear Structures

e Stacks
 (Implicit) program call stack

e Queues
* Implementations Details
* Applications

* |terators

Recursive “Pseudo-Code’ Sketch

Boolean RecSolve(Maze m, Posiion current)
If (current egauls finish) recirn true

Mark current as visited
next € some unvisited neighbor of current (or null if none lefi)
While (next does not equal/null && recSolve(m, next) is false)

next € some unvistted neighbor of current(or null if none lefi)

Rewwrn next = null

e To solve maze, call: Boolean recSolve(m, start)

e To prove correct: Induction on distance from current to
finish

* How could we generate the actual solution?

Method Call Stacks

In JVM, need to keep track of method calls

JVM maintains stack of method invocations (called
frames)

Stack of frames
* Receiver object, parameters, local variables

On method call
* Push new frame, fill in parameters, run code

Exceptions print out stack
Example: StackEx.java

Recursive calls recurse too far: StackOverflowException
e Overflow.java

Stacks vs. Queues

e Stacks are LIFO (Last In First Out)
e Methods: push, pop, peek, empty

e Sample Uses:
 Evaluating expressions (postfix)
* Solving mazes

e Evaluating postscript
* JVM method calls

* Queues are FIFO (First In First Out)

e Another linear data structure (implements Linear interface)

e Queue interface methods: enqueue (add), dequeue (remove),
getFirst (get), peek (get)

Queues

tail head |

* Examples:
* Lines at movie theater, grocery store, etc

e OS event queue (keeps keystrokes, mouse clicks,
etc, in order)

* Printers

e Routing network traffic (more on this later)

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed

public E peek(); //same as get()

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {

protected Object[] data; //can’t declare E[]
int head;

int count; // better than storing tail...

}
QueueVector
class QueueVector<kE> implements Queue<E> {
protected Vector<E> data;
}
Queuelist
class QueueList<E> implements Queue<E> ({
protected List<E> data; //uses a CircularList
}

All three of these also extend AbstractQueue

QueueArray

* Let’ s look at an example...

* How to implement!

* enqueue(item), dequeue(), size()

A | B == | A [B C | = B C
O kg
3] >
3 o
head tail £ head tail © tail head
head points to front of head and tail “wrap After wrap around,
queue; tail points to next around” array; head > tail in some
empty space (where next when queue is full, cases!

item will be added) head == talil

public class queueArray<kE> {

protected Object[] data; // Must use object because...
protected int head;

protected int count;

public queueArray(int size) {
data = new Object[size]; // ... can’'t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count<data.length, ”"Queue is full.");

int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
Assert.pre(count>0, "The queue is empty.");
E value = (E)datal[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

public boolean empty() {
return count>0;

Tradeoffs:

* QueueArray:
e enqueue is O(l)
e dequeue is O(l)
* Faster operations, but limited size
e QueueVector:
e enqueue is O(l) (but O(n) in worst case - ensureCapacity)
e dequeue is O(n)
e Queuelist:
e enqueue is O(l) (addLast)
e dequeue is O(l) (CLL removeFirst)

Routing With Queues

Slides by Stephen Freund

moo.cs.williams.edu

(137.165.8.3)

Message:

The Network

www.google.com

(216.239.37.99)

137.165.8.3

216.239.37.99

"Search for ..."

Moo

(137.165.8.3) |

Message:

Routers

www.google.com

(216.239.37.99)

137.165.8.3

216.239.37.99

"Search for ..."

Routers

Moo

. google
(137.165.8.3)

(216.239.37.99)

Routing Algorithm

|. Receive message

2. Look up Destination Address
a) Deliver message to Dest
b) Forward to next Router

RI

R4

Router Internals

R2

B

Lookup
Dest Addr

..i
A"..
137.165.8.3 RI
216.239.37.99
R4

-

RI

R4

Buffering Messages

* There may be delays

* Router receives messages faster than it
can process and send

« Some links are slower than others
* Common speeds: 10 Mbs, 100Mbs, 1Gbs.

» Wireless, satellite, infra-red, telephone line, ...
* Hardware problems

e Want to be able to handle short-term
congestion problems

Router Internals

=

i {D;;:t\:zr

— R

- R4

137.165.8.3 RI

216.239.37.99
R4

-

Firewalls

Check Source

500C

o

bad

Lookup
Dest Addr

K

— RI

—

discard

Priority Scheduling

Priority of
Source/Dest

Scheduler

~

Dest Addr
N Y,

Lookup

\

/

Bandwidth Shaper

Classify %mit(100)
Message Scheduler
A M-

N

=
Lookup
\Dest Addr

Choosing The Best Route

Moo

) google
(137.165.8.3)

(216.239.37.99)

Choosing Routes

 Routers exchange information
periodically

* Attempt to route on "best" path to
destination

* Not easy to determine:

* Network congestion varies (evening vs. morning)
e Hardware added/removed or failures

 Dijkstra's algorithm (later)

Visiting Data from a Structure

* Write a method (numOccurs) that counts the
number of times a particular Object appears
In a structure

public int numOccurs (List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(1i);
if (obj.equals(o)) count++;
}

return count;

}
e Does this work on all structures (that we
have studied so far)?

Problems

e get() not defined on Linear structures (i.e.,
stacks and queues)

* get() is “slow on some structures
 O(n) on SLL (and DLL)

* So numOccurs = O(n?) for linked lists

* How do we traverse data in structures in a
general, efficient way!?

e Goal: data structure-specific for efficiency

* Goal: use same interface to make general

Recall : Structure Operations

size()
1sEmpty ()
add ()
remove ()
clear()
contains|()

But also

e Method for efficient data traversal
e iterator ()

lterators

e Iterators provide support for efficiently visiting all
elements of a data structure

e An lterator:

* Provides generic methods to dispense values

* Traversal of elements : Iteration
* Production of values : Generation

e Abstracts away details of how elements are retrieved
e Uses different implementations for each structure

public interface Iterator<iE> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e It throws an UnsupportedOperationException exception

A Simple lterator

e Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;

int temp = current;

current = next;

next = temp + current;

return temp;

Why Is This Cool? (it is)

e We could calculate the it Fibonacci number
each time, but that would be slow

e Observation: to find the n Fib number, we
calculate the previous n-1 Fib numbers...

* But by storing some state, we can easily generate
the next Fib number in O(I) time

* Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time

e Let’s do the same for data structures

lterators Of Structures

Goal: Have data structures produce iterators that
return the values of the structure in some order.

How!?

* Define an iterator class for the structure, e.g.

public class VectorIterator<ge>
implements Iterator<g>;

public class SinglyLinkedListIterator<gE>
implements Iterator<g>;

* Provide a method in the structure that

returns an iterator
public Iterator<E> iterator(){ .. }

lterators Of Structures

The details of hasNext() and next() depend on the
specific data structure, e.g.

* Vectorlterator holds an array reference and index of
next element
* A reference to the data array of the Vector
e The index of the next element whose value to return
 SinglyLinkedListlterator holds
e a reference to the head of the list
e A reference to the next node whose value to return

Iterator Use : numO-ccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int numOccurs (List<E> data, E o) {
int count = 0;

for(Iterator<E> 1 = data.iterator());
i.hasNext();)
if(o.equals(i.next())) count++;

return count;

Implementation Details

We use both an Iterator interface and an
Abstractlterator class

All concrete classes in structure5 extend
Abstractlterator
e Abstractlterator partially implements Iterator
Importantly, Abstractlterator adds two methods
» get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for each data structure

Iterator Use : numO-ccurs

Using an Abstractlterator allows more flexible coding
(but requiring a cast to Abstractlterator)

Note: It has the form of a standard 3-part for statement

public int numOccurs (List<E> data, E o) {
int count = 0;
for(AbstractIterator<gE> i =
(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())
if(o.equals(i.get())) count++;
return count;

Implementation : SLLIterator

public class SinglyLinkedListIterator<E> extends AbstractIterator<iE> {
protected Node<E> head, current;

public SinglyLinkedListIterator (Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}
public boolean hasNext() { return current != null; }
public E get() { return current.value(); }

In SinglyLinkedList.java:

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

More lterator Examples

* How would we implement Vectorlterator?

* How about StackArraylterator?
* Do we go from bottom to top, or top to bottom!?

* Doesn’t matter! We just have to be consistent...

* We can also make “specialized” iterators
* Another SLL Example: Skiplterator.java

* Reverselterator.java

lterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop
for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int numOccurs (E[] data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

We can do this with classes that provide an iterator() method...

The Iterable Interface

We can use the “for-each” construct...
for(E elt : boxOfStuff) { ... }

...as long as boxOfStuff implements the lterable interface

public interface Iterable<T> {
public Iterator<T> iterator();

}

Since Structure<E> extends Iterable<E>, we can write

public int numOccurs (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

General Rules for lterators

|. Understand order of data structure
2. Always call hasNext() before calling next()!!!

3. Use remove with caution!

|. Don’t use remove....

4. Don’t add to structure while iterating: Testlterator.java

e Take away messages:
e Iterator objects capture state of traversal
* They have access to internal data representations

* They should be fast and easy to use

