
CSCI 136
Data Structures &

Advanced Programming

Lecture 14
Fall 2019

Instructor: Bill & Sam

Administration

• Lab 2 back, Lab 3 back soon
• Lab 5 out very soon
• Midterm next week--accommodations??

Last Time

• Implementation of Doubly Linked Lists
• The structure5 hierarchy so far

3

Today: Linear Structures

• The AbstractLinear and AbstractStack classes

• Stack Implementations
• StackArray, StackVector, StackList,

• Stack applications
• Expression Evaluation
• PostScript: Page Description & Programming
• Mazerunning (Depth-First-Search)

4

Linear Structures

• What if we want to impose access restrictions
on our lists?
• I.e., provide only one way to add and remove

elements from list
• No longer provide access to middle

• Key Examples: Order of removal depends on
order elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

5

Examples

• FIFO: First In – First Out (Queue)
• Line at dining hall
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Stack of trays at dining hall
• Java Virtual Machine stack

6

The Structure5 Universe (next)

Linear Interface

• How should it differ from List interface?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add a value to the structure.
• E remove(E o) – Remove value o from the structure.

– But this is awkward---why?
• int size(), isEmpty(), clear(), contains(E value), …

• Also:
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

8

Linear Structures

• Why no “random access”?
• I.e., no access to middle of list

• More restrictive than general List structures
• Less functionality can result in

• Simpler implementation
• Greater efficiency

• Approaches
• Use existing structures (Vector, LL), or
• Use underlying organization, but simplified

9

Stacks

• Examples: stack of trays or cups
• Can only take tray/cup from top of stack

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Only use push, pop, peek when talking about stacks
• Push = add to top of stack
• Pop = remove from top of stack
• Peek = look at top of stack (do not remove)

10

Notes about Terminology
• When using stacks:

• pop = remove
• push = add
• peek = get

• In Stack interface, pop/push/peek methods call
add/remove/get methods that are defined in Linear
interface

• But “add” is not mentioned in Stack interface (it is
inherited from Linear)

• Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces 11

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 12

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 13

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val), empty(), get(), remove(), size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val), pop() is remove(), peek() is get()

• Now we can extend AbstractStack to make
“concrete” Stack types
• StackArray<E>: holds an array of type E; add/remove at high end
• StackVector<E>: similar, but with a vector for dynamic growth
• StackList<E>: A singly-linked list with add/remove at head
• We implement add, empty, get, remove, size directly

• push, pop, peek are then indirectly implemented 14

The Structure5 Universe (so far)

Stack Applications

16

• Stack Implementation is simple, applications
are many
• “Bag” of items

• Call stack
• Evaluating mathematical expressions
• Searching (Depth-First Search)

• Removing recursion for optimization
• ...

Evaluating Arithmetic Expressions

• Computer programs regularly use stacks to
evaluate arithmetic expressions

• Example: x*y+z
• First rewrite as xy*z+ (we’ll look at this rewriting

process in more detail soon)
• Then:

• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

17

Converting Expressions

• We (humans) primarily use “infix” notation to
evaluate expressions
• (x+y)*z

• Computers traditionally used “postfix” (also called
Reverse Polish) notation
• xy+z*

• Operators appear after operands, parentheses not
necessary

• How do we convert between the two?
• Compilers do this for us

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp
• While there are input “tokens” (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

• (It is known a priori that the operator takes n arguments.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack.

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Example

• (x*y)+(z*w) → xy*zw*+
• Evaluate:

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

Lab Preview: PostScript

• PostScript is a programming language used for
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript
interpreter….

• You’ll be writing a (tiny part of) gs after midterm....

Lab Preview: PostScript

• Types: numeric, boolean, string, array, dictionary
• Operators: arithmetic, logical, graphic, …
• Procedures
• Variables: for objects and procedures
• PostScript is just as powerful as Java, Python, ...

• Not as intuitive
• Easy to automatically generate

• Example: Recursive factorial procedure
/fact { dup 1 gt { dup 1 sub fact mul } if } def

• Example: Drawing (see picture.ps)

Mazes

• How can we use a stack to solve a maze?
• http://www.primaryobjects.com/maze/

• Properties of mazes:
• We model a maze as a rectangular grid of cells

• There is a start cell and one or more finish cells
• Goal: Find path of adjacent free cells from start to finish

• Strategy: Consider unvisited cells as “potential tasks”
• Use linear structure (stack) to keep track of current path

being explored

http://www.primaryobjects.com/maze/

Solving Mazes

• We’ll use two objects to solve our maze:
• Position: Info about a single cell
• Maze: Grid of Positions

• General strategy:
• Use stack to keep track of path from start
• If we hit a dead end, backtrack by popping

location off stack
• Mark discarded cells to make sure we don’t visit

the same paths twice

Backtracking Search

• Try one way (favor north and east)
• If we get stuck, go back and try a different way
• We will eventually either find a solution or

exhaust all possibilities

• Also called a “depth first search”

• Lots of other algorithms that we will not
explore: http://www.astrolog.org/labyrnth/algrithm.htm

http://www.astrolog.org/labyrnth/algrithm.htm

A “Pseudo-Code” Sketch
// Initialization

Read cell data (free/blocked/start/finish) from file data
Mark all free cells as unvisited

Create an empty stack S
Mark start cell as visited and push it onto stack S

While (S isn’t empty && top of S isn’t finish cell)

current ß S.peek() // current is top of stack
If (current has an unvisited neighbor x)

Mark x as visited ; S.push(x) // x is explored next
Else S.pop()

If finish is on top of S then success else no solution

Is Pseudo-Code Correct?
• Tools

• Concepts: adjacent cells; path; simple path; path length;
shortest path; distance between cells; reachable from cell

• Solving a maze: is finish reachable from start?

• Theorem: The pseudo-code will either visit finish or
visit every free cell reachable from start

• Proof: Prove that if algorithm does not visit finish then it
does visit every free cell reachable from start
• Do this by induction on distance of free cell from start

• Base case: distance 0. Easy
• Induction: Assume every reachable free cell of distance at

most k ≥ 0 from start is visited. Prove for k+1

Is Pseudo-Code Correct?
• Induction Hyp: Assume every reachable free cell of

distance at most k ≥ 0 from start is visited.
• Induction Step: Prove that every reachable free cell

of distance k+1 from start is visited.
• Let c be a free cell of distance k+1 reachable from start
• Then c has a free neighbor d that is distance k from start

and reachable from start

• But then by induction, d is visited, so it was put on stack
• So each free neighbor of d is visited by algorithm

• Done!

Recursive “Pseudo-Code” Sketch
Boolean RecSolve(Maze m, Position current)

If (current equals finish) return true
Mark current as visited

next ß some unvisited neighbor of current (or null if none
left)
While (next does not equal null && recSolve(m, next) is
false)

nextß an unvisited neighbor of current (null if none left)

Return next != null
• To solve maze, call: Boolean recSolve(m, start)
• To prove correct: Induction on distance from current to

finish
• How could we generate the actual solution?

Implementing A Maze Solver

• Iteratively: Maze.java
• Recursively: RecMaze.java
• Recursive method keeps an implicit stack

• The method call stack

• Each recursive call adds to the stack

Implementation: Position class

• Represent position in maze as (x,y) coordinate
• class Position has several relevant methods:

• Find a neighbor
• Position getNorth(), getSouth(), getEast(),
getWest()

• boolean equals()

• Check states of position
• boolean isVisited(), isOpen()

• Set states of position
• void visit(), setOpen(boolean b)

Maze class
• Relevant Maze methods:

• Maze(String filename)
• Constructor; takes file describing maze as input

• void visit(Position p)

• Visit position p in maze
• boolean isVisited(Position p)

• Returns true iff p has been visited before
• Position start(), finish()

• Return start /finish positions
• Position nextAdjacent(Position p)

• Return next unvisited neighbor of p---or null if none
• boolean isClear(Position p)

• Returns true iff p is a valid move and is not a wall

Method Call Stacks
• In JVM, need to keep track of method calls
• JVM maintains stack of method invocations (called

frames)
• Stack of frames

• Receiver object, parameters, local variables

• On method call
• Push new frame, fill in parameters, run code

• Exceptions print out stack
• Example: StackEx.java
• Recursive calls recurse too far: StackOverflowException

• Overflow.java

Recursive Call Stacks

public static long factorial(int n) {
if (n <= 1) // base case

return 1;
else

return n * factorial(n - 1);
}

public static void main(String args[]) {
System.out.println(factorial(3)};

}

