CSCI 136
Data Structures &
Advanced Programming

Lecture |3

Fall 2019
Instructors: B&S

* There are two key aspects of Lists

* Elements of the list

Linked List Basics

* The list itself

* Visualizing lists

head —

tail

List element

List

Linked List Basics

e List nodes are recursive data structures

e (in a way)

e Each “node” has:
e A data value

e A “next” value that identifies the next element in
the list

e Can also have “previous” that identifies the
previous element (“doubly-linked” lists)

* What methods does Node class need!?

SinglyLinkedLists

Terminology alert!

 SinglyLinkedListNode = SLLN in these notes

e SLLN = Node in structure5 (and in Ch 9)
e Let’s look at SLLN.java

 How about SinglyLinkedList?

value

next

e SinglyLinkedList = SLL in my notes

head

What would addFirst(E d) look like?
getFirst()?

addlLast(E d)!? (more interesting)
getlast()?

More SLL Methods

* How would we implement:
 get(int index), set(E d, int index)
e add(E d, int index), remove(int index)
e Left as an exercise:
* contains(E d)
* clear()

* Note: E is value type

Get and Set

public E get(int index) {
Assert.pre(index < size() - 1, “Index out of range’);
// or should we return null in above case?
SLLN finger = head;
for (int i=0; i<index; i++){
finger = finger.next();
}

return finger.value();

public E set(E d, int index) {
Assert.pre(index < size() - 1, “Index out of range’);
// Same question!
SLLN finger = head;
for (int i=0; i<index; i++){
finger = finger.next();
}
E old = finger.value();
finger.setvValue(d);
return old;

Remove

public E remove(int index) {

if(index >= size()) return null;

E old;

if (index == 0) return removeFirst();

else if (index == size()-1) return removelast();
else {

SLLN finger = head;

for (int i=0; i<index - 1l; i++) { //stop one before index
finger = finger.next();

}

old = finger.next.value();

finger.setNext(finger.next().next());

count--;

return old;

Add

public void add(E d, int index) {
if(index > size()) return null;

E old;
if (index==0) { addFirst(d); }
else if (index==size()) { addLast(d); }

else {

SLLN finger = head;

SLLN previous = null;

for (int i=0; i<index; i++) {
previous = finger;
finger = finger.next();

}

SLLN elem = new SLLN(d, finger);

previous.setNext(elem); // new “ith”

count++;

item added after i-1

Linked Lists Summary

Recursive data structures used for storing data
More control over space use than Vectors
Easy to add objects to front of list
Components of SLL (SinglyLinkedList)

* head, elementCount

Components of SLLN (Node):

* pext, value

Vectors vs. SLL

e Compare performance of

size

addlLast, removelast, getLast
addFirst, removeFirst, getFirst
get(int index), set(E d, int index)
remove(int index)

contains(E d)

remove(E d)

SLL Summary

e SLLs provide methods for efficiently modifying front
of list

* Modifying tail/middle of list is not quite as efficient

e SLL runtimes are consistent
* No hidden costs like Vector.ensureCapacity()
* Avg and worst case are always the same

e Space usage
* No empty slots like vectors

* But keep extra reference for each value

e overhead proportional to list length
— (but this is constant and predictable)

Food for Thought:
SLL Improvements to Tail Ops

* |n addition to Node head and int elementCount, add
Node tail reference to SLL

* Result
e addlast and getlast are fast

* removelast is not improved

* We need to know element before tail so we can reset tail pointer

e Side effects

* We now have three cases to consider in method
implementations: empty list, head == tail, head != talil

e Think about addFirst(E d) and addLast(E d)

CircularlyLinkedLists

Use next reference of last element to reference head of

list

Replace head reference with tail reference

Access head of list via tail.next

ALL operations on head are fast!

adc

Last() is still fast

On

y modest additional complexity in implementation

Can “cyclically reorder” list by changing tail node

Question: What's a circularly linked list of size |?

DoublyLinkedLists

Keep reference/links in both directions
e previous and next
DoublyLinkedListNode instance variables
 DLLN next, DLLN prey, E value

Space overhead is proportional to number of elements
ALL operations on tail (including removelast) are fast!

Additional work in each list operation
e Example: add(E d, int index)

* Four cases to consider now: empty list, add to front, add to
tail, add in middle

public class DoublyLinkedNode<E>
{
protected E data;

protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

data = v;

nextElement = next;

if (nextElement != null) // point next back to me
nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null) // point previous to me

previousElement.nextElement = this;

DoublyLinkedList Add Method

public void add(int i, E o) {

Assert.pre((0 <= i) && (i <= size()),
"Index in range.");

if (1 == 0) addFirst(o);

else if (i == size()) addLast(o);

else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {
before = after;
after = after.next();
i--;
}
// before, after refer to items in slots i-1 and i

// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters

// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size

public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while (finger != null &&
!finger.value().equals(value))
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element

if (finger.previous() != null)
finger.previous().setNext(finger.next());

else head = finger.next();

// f£ix previous field of next element

if (finger.next() != null)
finger.next().setPrevious(finger.previous());

else tail = finger.previous();

count--;

return finger.value();

Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

e A collection of interfaces that describe---but do not

implement---the functionality of one or more data
structures

* A collection of abstract classes provide partial
implementations of one or more data structures

e To factor out common code or instance variables

* A collection of concrete (fully implemented) classes
to provide full functionality of a data structure

AbstractList Superclass

abstract class AbstractList<E> implements List<E> {
public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removelLast() { return remove(size()-1); }

e AbstractList provides some of the list functionality

e Code is shared among all sub-classes (see Ch. 7 for more info)
public boolean isEmpty() { return size() == 0; }

e Concrete classes (SLL, DLL) can override the code implemented in AbstractList

e Abstract classes in general do not implement every method
e For example, size() is not defined although it is in the List interface

e Can’ tcreate an “AbstractlList” directly

e Other lists extend AbstractList and implement missing functionality as needed
class Vector extends AbstractList {
public int size() { return elementCount; }

20

The Structure5 Universe (almost)
Interface Abstract Class -

List

3

AbstractList

s el i

The StructureS Universe (so far)

Interface Abstract Class Class

Structure

List

AbstractStructure

e

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList

The Structure5 Universe (soon)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Structures

* What if we want to impose access restrictions
on our lists!?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
* FIFO: First In First Out

24

Examples

* FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
 Stack of trays at dining hall

* Java Virtual Machine stack

25

The Structure5 Universe (next)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Interface

e How should it differ from List interface!?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* |Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.

* E remove(E o) — Remove value o from the structure.
— But this is awkward---why?

* int size(), isEmpty(), clear(), contains(E value), ...

e Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

27

Linear Structures

* What if we want to impose access restrictions
on our lists!?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
* FIFO: First In First Out

28

Examples

* FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
 Stack of trays at dining hall

* Java Virtual Machine stack

29

The Structure5 Universe (next)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Interface

e How should it differ from List interface!?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* |Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.

* E remove(E o) — Remove value o from the structure.
— But this is awkward---why?

* int size(), isEmpty(), clear(), contains(E value), ...

e Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

31

Linear Structures

* Why no “random access !

e |.e., no access to middle of list

* More restrictive than general List structures

 Less functionality can result in

e Simpler implementation

* Greater efficiency

e Approaches
* Use existing structures (Vector, LL), or

e Use underlying organization, but simplified

32

Stacks

e Examples: stack of trays or cups
e Can only take tray/cup from top of stack
* What methods do we need to define?
e Stack interface methods
* New terms: push, pop, peek
e Only use push, pop, peek when talking about stacks
e Push = add to top of stack

* Pop = remove from top of stack
* Peek = look at top of stack (do not remove)

33

Notes about Terminology

When using stacks:

° pop = remove

e push = add

* peek = get

In Stack interface, pop/push/peek methods call

add/remove/get methods that are defined in Linear
interface

But “add” is not mentioned in Stack interface (it is
inherited from Linear)

Stack interface extends Linear interface

* Interfaces extend other interfaces
e Classes implement interfaces

34

Stack Implementations

* Array-based stack
* int top, Object data]]
e Add/remove from index top

e Vector-based stack
e Vector data
e Add/remove from tail

e List-based stack
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) 3s

Stack Implementations

 structure5.StackArray
* int top, Object data]]
e Add/remove from index top

e structureb.StackVector
e Vector data
e Add/remove from tail

e structureb.StackList
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) 3

Summary Notes on The Hierarchy

Linear interface extends Structure
* add(E val), empty(), get(), remove(), size()
AbstractLinear (partially) implements Linear

AbstractStack class (partially) extends AbstractLinear
e Essentially introduces “stack-ish” names for methods
e push(E val) is add(E val), pop() is remove(), peek() is get()

e Now we can extend AbstractStack to make

“concrete” Stack types
e StackArray<E>: holds an array of type E; add/remove at high end
e StackVector<E>: similar, but with a vector for dynamic growth
o StackList<E>: A singly-linked list with add/remove at head

* We implement add, empty, get, remove, size directly
e push, pop, peek are then indirectly implemented 37

The Structure5 Universe (so far)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Stack Applications

« Stack Implementation is simple, applications are many
« Evaluating mathematical expressions

Searching (Depth-First Search)

« Removing recursion for optimization

Simulations

Evaluating Arithmetic Expressions

e Computer programs regularly use stacks to
evaluate arithmetic expressions

e Example: x*y+z

 First rewrite as xy*z+ (we’ll look at this rewriting
process in more detail soon)

e Then:

* push x
* pushy
* * (pop twice, multiply popped items, push result)
* push z

e + (pop twice, add popped items, push result) 40

Converting Expressions

* We (humans) primarily use “infix” notation to
evaluate expressions

° (xty)z

e Computers traditionally used “postfix” (also called
Reverse Polish) notation

e xy+z*

e Operators appear after operands, parentheses not
necessary

e How do we convert between the two!

e Compilers do this for us

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(O<Fy)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw¥)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:
* Read the next token from input.

If the token is a value, push it onto the stack.

Else, the token is an operator that takes n arguments.
e (It is known a priori that the operator takes n arguments.)
e If there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

The top value on the stack is the result of the calculation.

Note that results can be left on stack to be used in future
computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Example

¢ (<) +(ZW) — xy'TWh
* Evaluate:
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

Preview: PostScript

PostScript is a programming language used for
generating vector graphics
e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
* There are numeric, logic, string values

* Many operators

Let’s try it: The ‘gs’ command runs a PostScript
interpreter-....

You'll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

Types: numeric, boolean, string, array, dictionary
Operators: arithmetic, logical, graphic, ...
Procedures

Variables: for objects and procedures

PostScript is just as powerful as Java, Python, ...
* Not as intuitive
e Easy to automatically generate

