CSCI 136
Data Structures &
Advanced Programming

Lecture |3

Fall 2019
Instructors: B&S

Announcements

Exams

e Mid-term exam is VWednesday, October 16

* During your normal lab session

* You’'ll have approximately | hour & 45 minutes (if you
come on time!)

e Closed-book: Covers Chapters |-7 & 9, handouts, and all
topics up through Linked Lists

e Final Exam
e Monday, Dec. 16: 9:30 - noon (location TBA)

e Closed-book: Comprehensive, but focused on material not
covered on mid-term

e Make travel plans accordingly!

Last Time

* Implementing Lists with linked structures
* Singly Linked Lists
e Circularly Linked Lists
* Intro to Doubly-Linked Lists

Today

Implementation of Doubly Linked Lists
* From Lecture |12 slide deck....

The structure5 hierarchy so far
The Linear Interface
Linear Structures: Stacks & Queues

Stack Methods and Applications
* Expressions

Linear Structures

* What if we want to impose access restrictions
on our lists!?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
* FIFO: First In First Out

Examples

* FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
 Stack of trays at dining hall

* Java Virtual Machine stack

The Structure5 Universe (next)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Linear Interface

e How should it differ from List interface!?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* |Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.

* E remove(E o) — Remove value o from the structure.
— But this is awkward---why?

* int size(), isEmpty(), clear(), contains(E value), ...

e Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

Linear Structures

* Why no “random access !

e |.e., no access to middle of list

* More restrictive than general List structures

 Less functionality can result in

e Simpler implementation

* Greater efficiency

e Approaches
* Use existing structures (Vector, LL), or

e Use underlying organization, but simplified

Stacks

e Examples: stack of trays or cups
e Can only take tray/cup from top of stack

* What methods do we need to define!?
e Stack interface methods

* New terms: push, pop, peek

e Convention: Use push, pop, peek when talking
about stacks

e Push = add to top of stack
* Pop = remove from top of stack
* Peek = look at top of stack (do not remove)

Notes about Terminology

When using stacks:

° pop = remove

e push = add

* peek = get

In Stack interface, pop/push/peek methods call

add/remove/get methods that are declared in Linear
interface

But “add” is not mentioned in Stack interface (it is
inherited from Linear)

Stack interface extends Linear interface

* Interfaces extend other interfaces
e Classes implement interfaces

Stack Implementations

* Array-based stack
* int top, Object data]]
e Add/remove from index top

e Vector-based stack
e Vector data
e Add/remove from tail

e List-based stack
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) 13

Stack Implementations

 structure5.StackArray
* int top, Object data]]
e Add/remove from index top

e structureb.StackVector
e Vector data
e Add/remove from tail

e structureb.StackList
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) 14

Summary Notes on The Hierarchy

Linear interface extends Structure
* add(E val), empty(), get(), remove(), size()
AbstractLinear (partially) implements Linear

AbstractStack class (partially) extends AbstractLinear
e Essentially introduces “stack-ish” names for methods
e push(E val) is add(E val), pop() is remove(), peek() is get()

e Now we can extend AbstractStack to make

“concrete” Stack types
e StackArray<E>: holds an array of type E; add/remove at high end
e StackVector<E>: similar, but with a vector for dynamic growth
o StackList<E>: A singly-linked list with add/remove at head

* We implement add, empty, get, remove, size directly
e push, pop, peek are then indirectly implemented 15

The Structure5 Universe (so far)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector

Stack Applications

« Stack Implementation is simple, applications are many
« Evaluating mathematical expressions

Searching (Depth-First Search)

« Removing recursion for optimization

Simulations

Evaluating Arithmetic Expressions

e Computer programs regularly use stacks to
evaluate arithmetic expressions

e Example: x*y+z

 First rewrite as xy*z+ (we’ll look at this rewriting
process in more detail soon)

e Then:

* push x

* pushy

* * (pop twice, multiply popped items, push result)
* push z

* + (pop twice, add popped items, push result)

Converting Expressions

* We (humans) primarily use “infix” notation to
evaluate expressions

° (xty)z

e Computers traditionally used “postfix” (also called
Reverse Polish) notation

e xy+z*

e Operators appear after operands, parentheses not
necessary

e How do we convert between the two!

e Compilers do this for us

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(O<Fy)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw¥)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:
* Read the next token from input.

If the token is a value, push it onto the stack.

Else, the token is an operator that takes n arguments.
e (It is known a priori that the operator takes n arguments.)
e If there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack.
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

The top value on the stack is the result of the calculation.

Note that results can be left on stack to be used in future
computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Example

¢ (<) +(ZW) — xy'TWh
* Evaluate:
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

Preview: PostScript

PostScript is a programming language used for
generating vector graphics
e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
* There are numeric, logic, string values

* Many operators

Let’s try it: The ‘gs’ command runs a PostScript
interpreter-....

You'll be writing a (tiny part of) gs in lab soon....

Preview: PostScript

Types: numeric, boolean, string, array, dictionary
Operators: arithmetic, logical, graphic, ...
Procedures

Variables: for objects and procedures

PostScript is just as powerful as Java, Python, ...
* Not as intuitive
e Easy to automatically generate

