
CSCI 136
Data Structures &

Advanced Programming

Lecture 12
Fall 2019

Instructors: Bill & Sam

Last Time

• Merge sort and quicksort

2

Today

• Abstract classes and inheritance
• Lists
• Implementing Lists with linked structures
• Singly Linked Lists

• See Lecture 11 slides

• Circularly & Doubly Linked Lists
• The structure5 hierarchy so far

3

Class Specialization

• Classes can extend other classes
• Inherit fields and method bodies

• By extending other classes, we can create
specialized sub-classes

• Java supports class extension/specialization
• Java enforces type-safety: Objects behave

according to their type
• Some checks are made at compile-time
• Some checks are made at run-time

• We’ll first use this feature to factor out code
4

Abstract Classes
• Note: All of our Card implementations code
toString()in identical fashion.

• It’s good to be able to “factor out” common code so
that it only has to be maintained in one place

• Abstract classes to the rescue….
• An abstract class allows for a partial implementation
• We can then extend it to a complete implementation

• Let’s do this with our cards.
• Examine CardAbstract.java....

• As with interfaces, can‘t use “new“ with abstract
types! 5

Abstract Classes

Notes from CardAbstract class example
• CardAbstract implements Card (partially)
• CardAbstract is declared to be abstract

• It contains the implementation of toString(), equals(), and
compareTo() [Note: We made our cards comparable!]

How do the full implementations (CardRankSuit, etc) change?
• They are declared to extend CardAbstract
• They don’t need to say “implements Card”

• They don’t contain the toString() method
• They inherit that method from CardAbstract

• But could override that method if desired
6

Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

• Suppose we wanted to add a point value to each of
the playing cards in CardRankSuit

• We extend that class
class CardRankSuitPoints extends CardRankSuit {… }

• This new class can now contain additional instance
variables and methods

• Let’s look at the code for CardRankSuitPoints.java….
7

CardRankSuitPoints Notes
• Constructor calls CardRankSuit constructor using super

• We can override methods---e.g., toString()
• Can use a CardRankSuitPoints object wherever we use a
Card
• But! Can only use new features (getPoints()) if the

object is declared to be of type CardRankSuitPoints
CardRankSuitPoints c1 = new CardRankSuitPoints(

Rank.ACE, Suit.CLUBS, 4);

int p1 = c1.getPoints(); // Legal

Card c2 = new CardRankSuitPoints(Rank.ACE,
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card

int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

• Java enforces type-safety: An variable of type X can only be
assigned a value of type X or of a type that extends X 8

The Card Classes Hierarchy

9

Pros and Cons of Vectors

Pros
• Good general purpose list
• Dynamically Resizeable

• Fast access to elements
• vec.get(387425) finds item

387425 in the same
number of operations
regardless of vec’s size

Cons
• Slow updates to front

of list (why?)
• Hard to predict time

for add (depends on
internal array size)

• Potentially wasted space

Today we look at another way to store data: Linked Lists
10

But First : List Interface
interface List {

size()
isEmpty()
contains(e)
get(i)
set(i, e)
add(i, e)
remove(i)
addFirst(e)
getLast()
.
.
.

}

• Flexible interface

• Can be used to describe many
different types of lists

• It’s an interface…therefore it
provides no implementation

• Vector implements List

• Other implementations are
possible
• SinglyLinkedList

• CircularlyLinkedList

• DoublyLinkedList
11

Linked List Basics

• There are two key aspects of Lists
• Elements of the list
• The list itself

• Visualizing lists

head tail

List element List
12

Linked List Basics

• List nodes are recursive data structures
• Each “node” has:
• A data value
• A “next” value that identifies the next element in

the list
• Can also have “previous” that identifies the

previous element (“doubly-linked” lists)

• What methods does Node class need?

13

• Terminology alert!
• SinglyLinkedListNode = SLLN in these notes
• SLLN = Node in structure5 (and in Ch 9)
• Let’s look at SLLN.java

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

• What would addFirst(E d) look like?
• getFirst()?
• addLast(E d)? (more interesting)
• getLast()?

SinglyLinkedLists

head

value
next

14

More SLL Methods

• How would we implement:
• get(int index), set(E d, int index)
• add(E d, int index), remove(int index)

• Left as an exercise:
• contains(E d)
• clear()

• Note: E is value type

15

public E get(int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// or should we return null in above case?
SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
return finger.value();

}

public E set(E d, int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// Same question!
SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;

}

Get and Set

16

Remove
public E remove(int index) {

if(index >= size()) return null;

E old;

if (index == 0) return removeFirst();
else if (index == size()-1) return removeLast();

else {
SLLN finger = head;
for (int i=0; i<index - 1; i++) { //stop one before index

finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;

}
}

17

Add
public void add(E d, int index) {

if(index > size()) return null;
E old;

if (index==0) { addFirst(d); }

else if (index==size()) { addLast(d); }

else {
SLLN finger = head;
SLLN previous = null;
for (int i=0; i<index; i++) {

previous = finger;
finger = finger.next();

}
SLLN elem = new SLLN(d, finger);
previous.setNext(elem); // new “ith” item added after i-1
count++;

}
}

18

Linked Lists Summary

• Recursive data structures used for storing data
• More control over space use than Vectors
• Easy to add objects to front of list

• Components of SLL (SinglyLinkedList)
• head, elementCount

• Components of SLLN (Node):
• next, value

19

Vectors vs. SLL

• Compare performance of
• size
• addLast, removeLast, getLast

• addFirst, removeFirst, getFirst
• get(int index), set(E d, int index)
• remove(int index)

• contains(E d)
• remove(E d)

20

SLL Summary

• SLLs provide methods for efficiently modifying front
of list
• Modifying tail/middle of list is not quite as efficient

• SLL runtimes are consistent
• No hidden costs like Vector.ensureCapacity()
• Avg and worst case are always the same

• Space usage
• No empty slots like vectors
• But keep extra reference for each value

• overhead proportial to list length
– (but this is constant and predictable)

21

Food for Thought:
SLL Improvements to Tail Ops

• In addition to Node head and int elementCount, add
Node tail reference to SLL

• Result
• addLast and getLast are fast

• removeLast is not improved
• We need to know element before tail so we can reset tail pointer

• Side effects
• We now have three cases to consider in method

implementations: empty list, head == tail, head != tail

• Think about addFirst(E d) and addLast(E d)

22

CircularlyLinkedLists

• Use next reference of last element to reference head of
list

• Replace head reference with tail reference
• Access head of list via tail.next
• ALL operations on head are fast!
• addLast() is still fast
• Only modest additional complexity in implementation
• Can “cyclically reorder” list by changing tail node
• Question: What’s a circularly linked list of size 1?

23

DoublyLinkedLists

• Keep reference/links in both directions
• previous and next

• DoublyLinkedListNode instance variables
• DLLN next, DLLN prev, E value

• Space overhead is proportional to number of elements
• ALL operations on tail (including removeLast) are fast!
• Additional work in each list operation

• Example: add(E d, int index)
• Four cases to consider now: empty list, add to front, add to

tail, add in middle

24

public class DoublyLinkedNode<E>
{

protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null) // point next back to me

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null) // point previous to me

previousElement.nextElement = this;
}

public void add(int i, E o) {
Assert.pre((0 <= i) && (i <= size()),

"Index in range.");
if (i == 0) addFirst(o);
else if (i == size()) addLast(o);
else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;
after = after.next();
i--;

}
// before, after refer to items in slots i-1 and i
// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size
}

}

DoublyLinkedList Add Method

public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while (finger != null &&

!finger.value().equals(value))
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element
if (finger.previous() != null)

finger.previous().setNext(finger.next());
else head = finger.next();

// fix previous field of next element
if (finger.next() != null)

finger.next().setPrevious(finger.previous());
else tail = finger.previous();
count--;
return finger.value();

}

Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

• A collection of interfaces that describe---but do not
implement---the functionality of one or more data
structures

• A collection of abstract classes provide partial
implementations of one or more data structures

• To factor out common code or instance variables

• A collection of concrete (fully implemented) classes
to provide full functionality of a data structure

29

AbstractList Superclass
abstract class AbstractList<E> implements List<E> {

public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removeLast() { return remove(size()-1); }

}

• AbstractList provides some of the list functionality
• Code is shared among all sub-classes (see Ch. 7 for more info)

public boolean isEmpty() { return size() == 0; }

• Concrete classes (SLL, DLL) can override the code implemented in AbstractList

• Abstract classes in general do not implement every method
• For example, size() is not defined although it is in the List interface

• Can’t create an “AbstractList” directly

• Other lists extend AbstractList and implement missing functionality as needed
class Vector extends AbstractList {

public int size() { return elementCount; }
}

30

The Structure5 Universe (almost)

The Structure5 Universe (so far)

The Structure5 Universe (soon)

Linear Structures

• What if we want to impose access restrictions
on our lists?
• I.e., provide only one way to add and remove

elements from list
• No longer provide access to middle

• Key Examples: Order of removal depends on
order elements were added
• LIFO: Last In First Out
• FIFO: First In First Out

34

Examples

• FIFO: First In – First Out (Queue)
• Line at dining hall
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Stack of trays at dining hall
• Java Virtual Machine stack

35

The Structure5 Universe (next)

Linear Interface

• How should it differ from List interface?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add a value to the structure.
• E remove(E o) – Remove value o from the structure.

– But this is awkward---why?
• int size(), isEmpty(), clear(), contains(E value), …

• Adds
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

37

Linear Structures

• Why no “random access”?
• I.e., no access to middle of list

• More restrictive than general List structures
• Less functionality can result in

• Simpler implementation
• Greater efficiency

• Approaches
• Use existing structures (Vector, LL), or
• Use underlying organization, but simplified

38

Stacks

• Examples: stack of trays or cups
• Can only take tray/cup from top of stack

• What methods do we need to define?
• Stack interface methods

• New terms: push, pop, peek
• Only use push, pop, peek when talking about stacks
• Push = add to top of stack
• Pop = remove from top of stack
• Peek = look at top of stack (do not remove)

39

Notes about Terminology
• When using stacks:

• pop = remove
• push = add
• peek = get

• In Stack interface, pop/push/peek methods call
add/remove/get methods that are defined in Linear
interface

• But “add” is not mentioned in Stack interface (it is
inherited from Linear)

• Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces 40

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 41

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space) 42

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val), empty(), get(), remove(), size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for methods
• push(E val) is add(E val), pop() is remove(), peek() is get()

• Now we can extend AbstractStack to make
“concrete” Stack types
• StackArray<E>: holds an array of type E; add/remove at high end
• StackVector<E>: similar, but with a vector for dynamic growth
• StackList<E>: A singly-linked list with add/remove at head
• We implement add, empty, get, remove, size directly

• push, pop, peek are then indirectly implemented 43

The Structure5 Universe (so far)

