CSCI 136
Data Structures &
Advanced Programming

Lecture |2
Fall 2019

Instructors: Bill & Sam



Last Time

e Merge sort and quicksort



Today

Abstract classes and inheritance
Lists
Implementing Lists with linked structures
* Singly Linked Lists
e See Lecture |1 slides
e Circularly & Doubly Linked Lists
The structure5 hierarchy so far



Class Specialization

e Classes can extend other classes
* |nherit fields and method bodies

* By extending other classes, we can create
specialized sub-classes

* Java supports class extension/specialization

* Java enforces type-safety: Objects behave
according to their type
e Some checks are made at compile-time
* Some checks are made at run-time

o We'll first use this feature to factor out code



Abstract Classes

Note: All of our Card implementations code
toString()in identical fashion.

It’s good to be able to “factor out” common code so
that it only has to be maintained in one place

Abstract classes to the rescue....
An abstract class allows for a partial implementation
We can then extend it to a complete implementation

Let’s do this with our cards.

e Examine CardAbstract.java....

As with interfaces, can‘t use “new’ with abstract
types! 5



Abstract Classes

Notes from CardAbstract class example
e CardAbstract implements Card (partially)
e CardAbstract is declared to be abstract

* It contains the implementation of toString(), equals(), and
compareTo() [Note: We made our cards comparable!]

How do the full implementations (CardRankSuit, etc) change!?
* They are declared to extend CardAbstract
e They don’t need to say “implements Card”

 They don’t contain the toString() method
e They inherit that method from CardAbstract

* But could override that method if desired



Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

e Suppose we wanted to add a point value to each of
the playing cards in CardRankSuit

e We extend that class
class CardRankSuitPoints extends CardRankSuit {.. }

e This new class can now contain additional instance
variables and methods

e Let’s look at the code for CardRankSuitPoints.java.. ..



CardRankSuitPoints Notes

e Constructor calls CardRankSuit constructor using super
* We can override methods---e.g., toString()

e Canuse a CardRankSuitPoints object wherever we use a
Card

e But! Can only use new features (getPoints()) if the
object is declared to be of type CardRankSuitPoints

CardRankSuitPoints ¢l = new CardRankSuitPoints (
Rank.ACE, Suit.CLUBS, 4);

int pl = cl.getPoints(); // Legal

Card c2 = new CardRankSuitPoints (Rank.ACE,
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card
int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

e Java enforces type-safety: An variable of type X can only be
assigned a value of type X or of a type that extends X



The Card Classes Hierarchy
Interface Abstract Class -

Card

)
|

AbstractCard

e




Pros and Cons of Vectors

Pros Cons
* Good general purpose list ¢ Slow updates to front
* Dynamically Resizeable of list (why?)
 Fast access to elements * Hard to predict time
e vec.get(387425) finds item for add (depends on
387425 in the same internal array size)

number of operations

* Potentially wasted space
regardless of vec’s size

Today we look at another way to store data: Linked Lists



But First : List Interface

interface List { e Flexible interface

size() ,

i SEmpty () e Can be used to describe many

contains (e) different types of lists

get(1) * It’s an interface...therefore it

set(i, e) . . .
provides no implementation

add(i, e)

remove (1) * Vector implements List

addFirst(e) . .

getLast () e Other implementations are

possible

* SinglyLinkedList

e CircularlyLinkedList
} e DoublyLinkedList



* There are two key aspects of Lists

* Elements of the list

Linked List Basics

* The list itself

* Visualizing lists

head —

tail

List element

List



Linked List Basics

e List nodes are recursive data structures

e Each “node” has:
e A data value

e A “next” value that identifies the next element in
the list

e Can also have “previous” that identifies the
previous element (“doubly-linked” lists)

* What methods does Node class need!?



SinglyLinkedLists

* Terminology alert!
 SinglyLinkedListNode = SLLN in these notes
e SLLN = Node in structure5 (and in Ch 9) :
« Let's look at SLLN.java value | =
 How about SinglyLinkedList?
e SinglyLinkedList = SLL in my notes

head

* What would addFirst(E d) look like?
e getFirst()?

e addLast(E d)? (more interesting)

o getlast()?



More SLL Methods

* How would we implement:
 get(int index), set(E d, int index)
e add(E d, int index), remove(int index)
e Left as an exercise:
* contains(E d)
* clear()

* Note: E is value type



Get and Set

public E get(int index) {
Assert.pre(index < size() - 1, “Index out of range’);
// or should we return null in above case?
SLLN finger = head;
for (int i=0; i<index; i++){
finger = finger.next();
}

return finger.value();

public E set(E d, int index) {
Assert.pre(index < size() - 1, “Index out of range’);
// Same question!
SLLN finger = head;
for (int i=0; i<index; i++){
finger = finger.next();
}
E old = finger.value();
finger.setvValue(d);
return old;



Remove

public E remove(int index) {

if(index >= size()) return null;

E old;

if (index == 0) return removeFirst();

else if (index == size()-1) return removelast();
else {

SLLN finger = head;

for (int i=0; i<index - 1l; i++) { //stop one before index
finger = finger.next();

}

old = finger.next.value();

finger.setNext(finger.next().next());

count--;

return old;



Add

public void add(E d, int index) {
if(index > size()) return null;

E old;
if (index==0) { addFirst(d); }
else if (index==size()) { addLast(d); }

else {

SLLN finger = head;

SLLN previous = null;

for (int i=0; i<index; i++) {
previous = finger;
finger = finger.next();

}

SLLN elem = new SLLN(d, finger);

previous.setNext(elem); // new “ith”

count++;

item added after i-1



Linked Lists Summary

Recursive data structures used for storing data
More control over space use than Vectors
Easy to add objects to front of list
Components of SLL (SinglyLinkedList)

* head, elementCount

Components of SLLN (Node):

* pext, value



Vectors vs. SLL

e Compare performance of

size

addlLast, removelast, getLast
addFirst, removeFirst, getFirst
get(int index), set(E d, int index)
remove(int index)

contains(E d)

remove(E d)

20



SLL Summary

e SLLs provide methods for efficiently modifying front
of list

* Modifying tail/middle of list is not quite as efficient

e SLL runtimes are consistent
* No hidden costs like Vector.ensureCapacity()
* Avg and worst case are always the same

e Space usage
* No empty slots like vectors

* But keep extra reference for each value

e overhead proportial to list length
— (but this is constant and predictable)

21



Food for Thought:
SLL Improvements to Tail Ops

* |n addition to Node head and int elementCount, add
Node tail reference to SLL

* Result
e addlast and getlast are fast

* removelast is not improved

* We need to know element before tail so we can reset tail pointer

e Side effects

* We now have three cases to consider in method
implementations: empty list, head == tail, head != talil

e Think about addFirst(E d) and addLast(E d)

22



CircularlyLinkedLists

Use next reference of last element to reference head of

list

Replace head reference with tail reference

Access head of list via tail.next

ALL operations on head are fast!

adc

Last() is still fast

On

y modest additional complexity in implementation

Can “cyclically reorder” list by changing tail node

Question: What's a circularly linked list of size |?

23



DoublyLinkedLists

Keep reference/links in both directions
e previous and next
DoublyLinkedListNode instance variables
 DLLN next, DLLN prey, E value

Space overhead is proportional to number of elements
ALL operations on tail (including removelast) are fast!

Additional work in each list operation
e Example: add(E d, int index)

* Four cases to consider now: empty list, add to front, add to

tail, add in middle

24



public class DoublyLinkedNode<E>
{
protected E data;

protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

data = v;

nextElement = next;

if (nextElement != null) // point next back to me
nextElement.previousElement = this;

previousElement = previous;

if (previousElement != null) // point previous to me

previousElement.nextElement = this;



DoublyLinkedList Add Method

public void add(int i, E o) {

Assert.pre((0 <= i) && (i <= size()),
"Index in range.");

if (1 == 0) addFirst(o);

else if (i == size()) addLast(o);

else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {
before = after;
after = after.next();
i--;
}
// before, after refer to items in slots i-1 and i

// continued on next slide



DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters

// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size



public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while ( finger != null &&
!finger.value().equals(value) )
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element

if (finger.previous() != null)
finger.previous().setNext(finger.next());

else head = finger.next();

// f£ix previous field of next element

if (finger.next() != null)
finger.next().setPrevious(finger.previous());

else tail = finger.previous();

count--;

return finger.value();



Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

e A collection of interfaces that describe---but do not

implement---the functionality of one or more data
structures

* A collection of abstract classes provide partial
implementations of one or more data structures

e To factor out common code or instance variables

* A collection of concrete (fully implemented) classes
to provide full functionality of a data structure

29



AbstractList Superclass

abstract class AbstractList<E> implements List<E> {
public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removelLast() { return remove(size()-1); }

e AbstractList provides some of the list functionality

e Code is shared among all sub-classes (see Ch. 7 for more info)
public boolean isEmpty() { return size() == 0; }

e Concrete classes (SLL, DLL) can override the code implemented in AbstractList

e Abstract classes in general do not implement every method
e For example, size() is not defined although it is in the List interface

e Can’ tcreate an “AbstractlList” directly

e Other lists extend AbstractList and implement missing functionality as needed
class Vector extends AbstractList {
public int size() { return elementCount; }

30



The Structure5 Universe (almost)
Interface Abstract Class -

List

3

AbstractList

s el i




The StructureS Universe (so far)

Interface Abstract Class Class

Structure

List

AbstractStructure

e

AbstractList
/ A \

Vector SinglyLinkedList DoublyLinkedList




The Structure5 Universe (soon)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector




Linear Structures

* What if we want to impose access restrictions
on our lists!?

* |.e., provide only one way to add and remove
elements from list

* No longer provide access to middle
* Key Examples: Order of removal depends on
order elements were added
e LIFO: Last In First Out
* FIFO: First In First Out

34



Examples

* FIFO: First In — First Out (Queue)
* Line at dining hall

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)
 Stack of trays at dining hall

* Java Virtual Machine stack

35



The Structure5 Universe (next)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector




Linear Interface

e How should it differ from List interface!?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* |Inherits all of the Structure interface methods
e add(E value) — Add a value to the structure.

* E remove(E o) — Remove value o from the structure.
— But this is awkward---why?

* int size(), isEmpty(), clear(), contains(E value), ...

e Adds

e E get() — Preview the next object to be removed.
* E remove() — Remove the next value from the structure.
* boolean empty() — same as isEmpty()

37



Linear Structures

* Why no “random access !

e |.e., no access to middle of list

* More restrictive than general List structures

 Less functionality can result in

e Simpler implementation

* Greater efficiency

e Approaches
* Use existing structures (Vector, LL), or

e Use underlying organization, but simplified

38



Stacks

e Examples: stack of trays or cups
e Can only take tray/cup from top of stack
* What methods do we need to define?
e Stack interface methods
* New terms: push, pop, peek
e Only use push, pop, peek when talking about stacks
e Push = add to top of stack

* Pop = remove from top of stack
* Peek = look at top of stack (do not remove)

39



Notes about Terminology

When using stacks:

° pop = remove

e push = add

* peek = get

In Stack interface, pop/push/peek methods call

add/remove/get methods that are defined in Linear
interface

But “add” is not mentioned in Stack interface (it is
inherited from Linear)

Stack interface extends Linear interface

* Interfaces extend other interfaces
e Classes implement interfaces

40



Stack Implementations

* Array-based stack
* int top, Object data] ]
e Add/remove from index top

e Vector-based stack
e Vector data
e Add/remove from tail

e List-based stack
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted’” space)



Stack Implementations

 structure5.StackArray
* int top, Object data] ]
e Add/remove from index top

e structureb.StackVector
e Vector data
e Add/remove from tail

e structureb.StackList
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space) 4



Summary Notes on The Hierarchy

Linear interface extends Structure
* add(E val), empty(), get(), remove(), size()
AbstractLinear (partially) implements Linear

AbstractStack class (partially) extends AbstractLinear
e Essentially introduces “stack-ish” names for methods
e push(E val) is add(E val), pop() is remove(), peek() is get()

e Now we can extend AbstractStack to make

“concrete” Stack types
e StackArray<E>: holds an array of type E; add/remove at high end
e StackVector<E>: similar, but with a vector for dynamic growth
o StackList<E>: A singly-linked list with add/remove at head

* We implement add, empty, get, remove, size directly
e push, pop, peek are then indirectly implemented 43



The Structure5 Universe (so far)

Interface Abstract Class Class
Structure
List Linear
4
\ AbstractStructure
AbstractList AbstractLinear
A / \
Vector SinglyLinkedList DoublyLinkedList AbstractStack | | AbstractQueue

AN

StackArray StackList StackVector




