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Last Time

• Comparables and Comparators

2



Today: Better Sorting

• Comparator example
• Merge Sort
• Quick Sort
• Class extension
• Abstract base classes

• Concrete extension classes
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Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the 

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 4



Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge
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Merge Sort : Pseudo-code
• How would we design it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[],  int from, int to)

if ( from ≤ to )
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
6



Merge Sort : Java Implementation
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)? 
• Need an extra array, so really O(2n)!  But O(2n) = O(n)
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Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9]    split

• [8 14] [29 1] [17 39] [16 9]    split
• [8] [14] [29] [1] [17] [39] [16] [9]   split
• [8 14] [1 29] [17 39] [9 16]  merge
• [1 8 14 29] [9 16 17 39]  merge

• [1 8 9 14 16 17 29 39]  merge

log n

log n

merge takes at most n comparisons per line
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Time Complexity Proof

• Prove for n = 2k (true for other n)

• That is, MergeSort for  performs at most

• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base cases k ≤ 1: 0 comparisons: 0 < 1 ∗ 21 ✓

• Induction Step: Suppose true for all integers 
smaller than k. Let T(k) be # of comparisons 
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓
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Merge Sort

• Unlike Bubble, Insertion, and Selection sort, 
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n) 

• Are there any limitations with Merge sort?
• Why would we ever use any other algorithm 

for sorting?
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Drawbacks to Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth 
between original array and temporary array

• Can we avoid this?
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Quick Sort

• Quick sort is designed to behave much like 
Merge sort, without requiring extra storage 
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts
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Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;   
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);    
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

13



Partition

1. Put first element (pivot) into sorted position
2. All to the left of “pivot” are smaller and all 

to the right are larger

3. Return index of “pivot”
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Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;    
if (left < right) {

swap(data,left++,right);
} else {

return left;           
}

while (left < right && data[left] < data[right]) 
left++;

if (left < right) {
swap(data,left,right--); 

} else {
return right;    

}         
}    

} 15



Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as 

merge sort, so O(n log n)
• If data is already sorted, partition splits list into 

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergeSort)

• In fact, it’s n + c compared to 2n + c for MergeSort
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Merge vs. Quick (Average Time)
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Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)
• i.e. first, middle, last

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is 

almost sorted (partitions are very unbalanced)
• Heuristic!
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Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if  “optimiazed”

O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
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Class Specialization

• Classes can extend other classes
• Inherit fields and method bodies

• By extending other classes, we can create 
specialized sub-classes

• Java supports class extension/specialization
• Java enforces type-safety: Objects behave 

according to their type 
• Some checks are made at compile-time
• Some checks are made at run-time

• We’ll first use this feature to factor out code
20



Abstract Classes
• Note: All of our Card implementations code 
toString()in identical fashion.

• It’s good to be able to “factor out” common code so 
that it only has to be maintained in one place

• Abstract classes to the rescue….
• An abstract class allows for a partial implementation
• We can then extend it to a complete implementation

• Let’s do this with our cards.
• Examine CardAbstract.java....

• As with interfaces, can‘t use “new“ with abstract 
types! 21



Abstract Classes

Notes from CardAbstract class example
• CardAbstract implements Card (partially)
• CardAbstract is declared to be abstract

• It contains the implementation of toString(), equals(), and 
compareTo() [Note: We made our cards comparable!]

How do the full implementations (CardRankSuit, etc) change?
• They are declared to extend CardAbstract
• They don’t need to say “implements Card”

• They don’t contain the toString() method
• They inherit that method from CardAbstract

• But could override that method if desired
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Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

• Suppose we wanted to add a point value to each of 
the playing cards in CardRankSuit

• We extend that class
class CardRankSuitPoints extends CardRankSuit {… }

• This new class can now contain additional instance 
variables and methods

• Let’s look at the code for CardRankSuitPoints.java….
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CardRankSuitPoints Notes
• Constructor calls CardRankSuit constructor using super

• We can override methods---e.g., toString()
• Can use a CardRankSuitPoints object wherever we use a 
Card
• But! Can only use new features (getPoints()) if the 

object is declared to be of type CardRankSuitPoints
CardRankSuitPoints c1 = new CardRankSuitPoints( 

Rank.ACE, Suit.CLUBS, 4);

int p1 = c1.getPoints(); // Legal

Card c2 = new CardRankSuitPoints(Rank.ACE, 
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card

int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

• Java enforces type-safety: An variable of type X can only be 
assigned a value of type X or of a type that extends X 24



The Card Classes Hierarchy

25



Pros and Cons of Vectors

Pros
• Good general purpose list

• Dynamically Resizeable
• Fast access to elements 

• vec.get(387425) finds item 
387425 in the same 
number of operations 
regardless of vec’s size

Cons
• Slow updates to front 

of list (why?)
• Hard to predict time 

for add (depends on 
internal array size)

• Potentially wasted space

Today we look at another way to store data: Linked Lists
26



But First : List Interface
interface List {

size()
isEmpty()
contains(e)
get(i)
set(i, e)
add(i, e)
remove(i)
addFirst(e)
getLast()
.
.
.

}

• Flexible interface

• Can be used to describe many 
different types of lists

• It’s an interface…therefore it 
provides no implementation

• Vector implements List

• Other implementations are 
possible
• SinglyLinkedList

• CircularlyLinkedList

• DoublyLinkedList
27



Linked List Basics

• There are two key aspects of Lists
• Elements of the list
• The list itself

• Visualizing lists

head tail

List element List
28



Linked List Basics

• List nodes are recursive data structures
• Each “node” has: 
• A data value
• A “next” value that identifies the next element in 

the list
• Can also have “previous” that identifies the 

previous element (“doubly-linked” lists)

• What methods does Node class need?

29



• Terminology alert!
• SinglyLinkedListNode = SLLE in these notes
• SLLE = Node in structure5 (and in Ch 9)
• Let’s look at SLLE.java

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

• What would addFirst(E d) look like?
• getFirst()?
• addLast(E d)? (more interesting)
• getLast()?

SinglyLinkedLists

head

value
next

30



More SLL Methods

• How would we implement:
• get(int index), set(E d, int index)
• add(E d, int index), remove(int index)

• Left as an exercise:
• contains(E d)
• clear()

• Note: E is value type

31



public E get(int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// or should we return null in above case?
SLLN finger = head;
for (int i=0; i<index; i++){ 

finger = finger.next();
}
return finger.value();

}

public E set(E d, int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// Same question!
SLLN finger = head;
for (int i=0; i<index; i++){ 

finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;

}

Get and Set
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Remove
public E remove(int index) {

if(index >= size()) return null;

E old;

if (index == 0) return removeFirst();
else if (index == size()-1) return removeLast();

else {
SLLN finger = head;
for (int i=0; i<index - 1; i++) { //stop one before index

finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;

}
}
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Add
public void add(E d, int index) {

if(index > size()) return null;
E old;

if (index==0) { addFirst(d); }

else if (index==size()) { addLast(d); }

else {
SLLN finger = head;
SLLN previous = null;
for (int i=0; i<index; i++) { 

previous = finger;
finger = finger.next();

}
SLLN elem = new SLLN(d, finger);
previous.setNext(elem); // new “ith” item added after i-1
count++;

}
}
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Linked Lists Summary

• Recursive data structures used for storing data
• More control over space use than Vectors

• Easy to add objects to front of list
• Components of SLL (SinglyLinkedList)

• head, elementCount

• Components of SLLN (Node):
• next, value
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Vectors vs. SLL

• Compare performance of 
• size
• addLast, removeLast, getLast

• addFirst, removeFirst, getFirst
• get(int index), set(E d, int index)
• remove(int index)

• contains(E d)
• remove(E d)
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SLL Summary

• SLLs provide methods for efficiently modifying front 
of list
• Modifying tail/middle of list is not quite as efficient

• SLL runtimes are consistent
• No hidden costs like Vector.ensureCapacity()
• Avg and worst case are always the same

• Space usage
• No empty slots like vectors
• But keep extra reference for each value

• overhead proportial to list length
– (but this is constant and predictable)
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Food for Thought:
SLL Improvements to Tail Ops

• In addition to Node head and int elementCount, add 
Node tail reference to SLL

• Result
• addLast and getLast are fast

• removeLast is not improved
• We need to know element before tail so we can reset tail pointer

• Side effects
• We now have three cases to consider in method 

implementations: empty list, head == tail, head != tail

• Think about addFirst(E d) and addLast(E d)
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CircularlyLinkedLists

• Use next reference of last element to reference head of 
list

• Replace head reference with tail reference
• Access head of list via tail.next
• ALL operations on head are fast!
• addLast() is still fast
• Only modest additional complexity in implementation
• Can “cyclically reorder” list by changing tail node
• Question: What’s a circularly linked list of size 1?
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DoublyLinkedLists

• Keep reference/links in both directions 
• previous and next

• DoublyLinkedListNode instance variables
• DLLN next, DLLN prev, E value

• Space overhead is proportional to number of elements
• ALL operations on tail (including removeLast) are fast!
• Additional work in each list operation

• Example: add(E d, int index)
• Four cases to consider now: empty list, add to front, add to 

tail, add in middle
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public class DoublyLinkedNode<E>
{

protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null)  // point next back to me

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null) // point previous to me

previousElement.nextElement = this;
}



public void add(int i, E o) {
Assert.pre((0 <= i) && (i <= size()),

"Index in range.");
if (i == 0) addFirst(o);
else if (i == size()) addLast(o);
else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;
after = after.next();
i--;

}          
// before, after refer to items in slots i-1 and i
// continued on next slide

DoublyLinkedList Add Method



// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size
}

}

DoublyLinkedList Add Method



public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while ( finger != null &&

!finger.value().equals(value) )
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element
if (finger.previous() != null)

finger.previous().setNext(finger.next());
else head = finger.next();

// fix previous field of next element
if (finger.next() != null)

finger.next().setPrevious(finger.previous());
else tail = finger.previous();
count--;
return finger.value();

}



Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

• A collection of interfaces that describe---but do not 
implement---the functionality of one or more data 
structures

• A collection of abstract classes provide partial 
implementations of one or more data structures

• To factor out common code or instance variables

• A collection of concrete (fully implemented) classes 
to provide full functionality of a data structure

45



AbstractList Superclass
abstract class AbstractList<E> implements List<E> {

public void addFirst(E element) { add(0, element); } 
public E getLast() { return get(size()-1);} 
public E removeLast() { return remove(size()-1); }

}

• AbstractList provides some of the list functionality
• Code is shared among all sub-classes (see Ch. 7 for more info)

public boolean isEmpty() { return size() == 0; }

• Concrete classes (SLL, DLL) can override the code implemented in AbstractList

• Abstract classes in general do not implement every method
• For example, size() is not defined although it is in the List interface

• Can’t create an “AbstractList” directly

• Other lists extend AbstractList and implement missing functionality as needed
class Vector extends AbstractList {

public int size() { return elementCount; }
}
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The Structure5 Universe (almost)



The Structure5 Universe (so far)


