
CSCI 136
Data Structures &

Advanced Programming

Lecture 11
Fall 2019

Instructors: Bill & Sam

Last Time

• Comparables and Comparators

2

Today: Better Sorting

• Comparator example
• Merge Sort
• Quick Sort
• Class extension
• Abstract base classes

• Concrete extension classes

3

Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 4

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

5

Merge Sort : Pseudo-code
• How would we design it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
6

Merge Sort : Java Implementation
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)! But O(2n) = O(n)

7

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

8

Time Complexity Proof

• Prove for n = 2k (true for other n)

• That is, MergeSort for performs at most

• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base cases k ≤ 1: 0 comparisons: 0 < 1 ∗ 21 ✓

• Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓

9

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n)

• Are there any limitations with Merge sort?
• Why would we ever use any other algorithm

for sorting?

10

Drawbacks to Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

11

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

12

Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

13

Partition

1. Put first element (pivot) into sorted position
2. All to the left of “pivot” are smaller and all

to the right are larger

3. Return index of “pivot”

14

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 15

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergeSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

16

Merge vs. Quick (Average Time)

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

17

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)
• i.e. first, middle, last

• Combine selection sort with quick sort
• For small n, selection sort is faster
• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

18

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

19

Class Specialization

• Classes can extend other classes
• Inherit fields and method bodies

• By extending other classes, we can create
specialized sub-classes

• Java supports class extension/specialization
• Java enforces type-safety: Objects behave

according to their type
• Some checks are made at compile-time
• Some checks are made at run-time

• We’ll first use this feature to factor out code
20

Abstract Classes
• Note: All of our Card implementations code
toString()in identical fashion.

• It’s good to be able to “factor out” common code so
that it only has to be maintained in one place

• Abstract classes to the rescue….
• An abstract class allows for a partial implementation
• We can then extend it to a complete implementation

• Let’s do this with our cards.
• Examine CardAbstract.java....

• As with interfaces, can‘t use “new“ with abstract
types! 21

Abstract Classes

Notes from CardAbstract class example
• CardAbstract implements Card (partially)
• CardAbstract is declared to be abstract

• It contains the implementation of toString(), equals(), and
compareTo() [Note: We made our cards comparable!]

How do the full implementations (CardRankSuit, etc) change?
• They are declared to extend CardAbstract
• They don’t need to say “implements Card”

• They don’t contain the toString() method
• They inherit that method from CardAbstract

• But could override that method if desired
22

Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

• Suppose we wanted to add a point value to each of
the playing cards in CardRankSuit

• We extend that class
class CardRankSuitPoints extends CardRankSuit {… }

• This new class can now contain additional instance
variables and methods

• Let’s look at the code for CardRankSuitPoints.java….
23

CardRankSuitPoints Notes
• Constructor calls CardRankSuit constructor using super

• We can override methods---e.g., toString()
• Can use a CardRankSuitPoints object wherever we use a
Card
• But! Can only use new features (getPoints()) if the

object is declared to be of type CardRankSuitPoints
CardRankSuitPoints c1 = new CardRankSuitPoints(

Rank.ACE, Suit.CLUBS, 4);

int p1 = c1.getPoints(); // Legal

Card c2 = new CardRankSuitPoints(Rank.ACE,
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card

int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

• Java enforces type-safety: An variable of type X can only be
assigned a value of type X or of a type that extends X 24

The Card Classes Hierarchy

25

Pros and Cons of Vectors

Pros
• Good general purpose list

• Dynamically Resizeable
• Fast access to elements

• vec.get(387425) finds item
387425 in the same
number of operations
regardless of vec’s size

Cons
• Slow updates to front

of list (why?)
• Hard to predict time

for add (depends on
internal array size)

• Potentially wasted space

Today we look at another way to store data: Linked Lists
26

But First : List Interface
interface List {

size()
isEmpty()
contains(e)
get(i)
set(i, e)
add(i, e)
remove(i)
addFirst(e)
getLast()
.
.
.

}

• Flexible interface

• Can be used to describe many
different types of lists

• It’s an interface…therefore it
provides no implementation

• Vector implements List

• Other implementations are
possible
• SinglyLinkedList

• CircularlyLinkedList

• DoublyLinkedList
27

Linked List Basics

• There are two key aspects of Lists
• Elements of the list
• The list itself

• Visualizing lists

head tail

List element List
28

Linked List Basics

• List nodes are recursive data structures
• Each “node” has:
• A data value
• A “next” value that identifies the next element in

the list
• Can also have “previous” that identifies the

previous element (“doubly-linked” lists)

• What methods does Node class need?

29

• Terminology alert!
• SinglyLinkedListNode = SLLE in these notes
• SLLE = Node in structure5 (and in Ch 9)
• Let’s look at SLLE.java

• How about SinglyLinkedList?
• SinglyLinkedList = SLL in my notes

• What would addFirst(E d) look like?
• getFirst()?
• addLast(E d)? (more interesting)
• getLast()?

SinglyLinkedLists

head

value
next

30

More SLL Methods

• How would we implement:
• get(int index), set(E d, int index)
• add(E d, int index), remove(int index)

• Left as an exercise:
• contains(E d)
• clear()

• Note: E is value type

31

public E get(int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// or should we return null in above case?
SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
return finger.value();

}

public E set(E d, int index) {
Assert.pre(index < size() - 1, “Index out of range”);
// Same question!
SLLN finger = head;
for (int i=0; i<index; i++){

finger = finger.next();
}
E old = finger.value();
finger.setValue(d);
return old;

}

Get and Set

32

Remove
public E remove(int index) {

if(index >= size()) return null;

E old;

if (index == 0) return removeFirst();
else if (index == size()-1) return removeLast();

else {
SLLN finger = head;
for (int i=0; i<index - 1; i++) { //stop one before index

finger = finger.next();
}
old = finger.next.value();
finger.setNext(finger.next().next());
count--;
return old;

}
}

33

Add
public void add(E d, int index) {

if(index > size()) return null;
E old;

if (index==0) { addFirst(d); }

else if (index==size()) { addLast(d); }

else {
SLLN finger = head;
SLLN previous = null;
for (int i=0; i<index; i++) {

previous = finger;
finger = finger.next();

}
SLLN elem = new SLLN(d, finger);
previous.setNext(elem); // new “ith” item added after i-1
count++;

}
}

34

Linked Lists Summary

• Recursive data structures used for storing data
• More control over space use than Vectors

• Easy to add objects to front of list
• Components of SLL (SinglyLinkedList)

• head, elementCount

• Components of SLLN (Node):
• next, value

35

Vectors vs. SLL

• Compare performance of
• size
• addLast, removeLast, getLast

• addFirst, removeFirst, getFirst
• get(int index), set(E d, int index)
• remove(int index)

• contains(E d)
• remove(E d)

36

SLL Summary

• SLLs provide methods for efficiently modifying front
of list
• Modifying tail/middle of list is not quite as efficient

• SLL runtimes are consistent
• No hidden costs like Vector.ensureCapacity()
• Avg and worst case are always the same

• Space usage
• No empty slots like vectors
• But keep extra reference for each value

• overhead proportial to list length
– (but this is constant and predictable)

37

Food for Thought:
SLL Improvements to Tail Ops

• In addition to Node head and int elementCount, add
Node tail reference to SLL

• Result
• addLast and getLast are fast

• removeLast is not improved
• We need to know element before tail so we can reset tail pointer

• Side effects
• We now have three cases to consider in method

implementations: empty list, head == tail, head != tail

• Think about addFirst(E d) and addLast(E d)

38

CircularlyLinkedLists

• Use next reference of last element to reference head of
list

• Replace head reference with tail reference
• Access head of list via tail.next
• ALL operations on head are fast!
• addLast() is still fast
• Only modest additional complexity in implementation
• Can “cyclically reorder” list by changing tail node
• Question: What’s a circularly linked list of size 1?

39

DoublyLinkedLists

• Keep reference/links in both directions
• previous and next

• DoublyLinkedListNode instance variables
• DLLN next, DLLN prev, E value

• Space overhead is proportional to number of elements
• ALL operations on tail (including removeLast) are fast!
• Additional work in each list operation

• Example: add(E d, int index)
• Four cases to consider now: empty list, add to front, add to

tail, add in middle

40

public class DoublyLinkedNode<E>
{

protected E data;
protected DoublyLinkedNode<E> nextElement;
protected DoublyLinkedNode<E> previousElement;

// Constructor inserts new node between existing nodes
public DoublyLinkedNode(E v,

DoublyLinkedNode<E> next,
DoublyLinkedNode<E> previous)

{
data = v;
nextElement = next;
if (nextElement != null) // point next back to me

nextElement.previousElement = this;
previousElement = previous;
if (previousElement != null) // point previous to me

previousElement.nextElement = this;
}

public void add(int i, E o) {
Assert.pre((0 <= i) && (i <= size()),

"Index in range.");
if (i == 0) addFirst(o);
else if (i == size()) addLast(o);
else {

// Find items before and after insert point
DoublyLinkedNode<E> before = null;
DoublyLinkedNode<E> after = head;
// search for ith position
while (i > 0) {

before = after;
after = after.next();
i--;

}
// before, after refer to items in slots i-1 and i
// continued on next slide

DoublyLinkedList Add Method

// Note: Still in “else” block!
// before, after refer to items in slots i-1 and i

// create new value to insert in correct position
// Use DLN constructor that takes parameters
// to set its next and previous instance variables
DoublyLinkedNode<E> current =

new DoublyLinkedNode<E>(o,after,before);

count++; // adjust size
}

}

DoublyLinkedList Add Method

public E remove(E value) {
DoublyLinkedNode<E> finger = head;
while (finger != null &&

!finger.value().equals(value))
finger = finger.next();

if (finger == null) return null;

// fix next field of previous element
if (finger.previous() != null)

finger.previous().setNext(finger.next());
else head = finger.next();

// fix previous field of next element
if (finger.next() != null)

finger.next().setPrevious(finger.previous());
else tail = finger.previous();
count--;
return finger.value();

}

Duane’s Structure Hierarchy

The structure5 package has a hierarchical structure

• A collection of interfaces that describe---but do not
implement---the functionality of one or more data
structures

• A collection of abstract classes provide partial
implementations of one or more data structures

• To factor out common code or instance variables

• A collection of concrete (fully implemented) classes
to provide full functionality of a data structure

45

AbstractList Superclass
abstract class AbstractList<E> implements List<E> {

public void addFirst(E element) { add(0, element); }
public E getLast() { return get(size()-1);}
public E removeLast() { return remove(size()-1); }

}

• AbstractList provides some of the list functionality
• Code is shared among all sub-classes (see Ch. 7 for more info)

public boolean isEmpty() { return size() == 0; }

• Concrete classes (SLL, DLL) can override the code implemented in AbstractList

• Abstract classes in general do not implement every method
• For example, size() is not defined although it is in the List interface

• Can’t create an “AbstractList” directly

• Other lists extend AbstractList and implement missing functionality as needed
class Vector extends AbstractList {

public int size() { return elementCount; }
}

46

The Structure5 Universe (almost)

The Structure5 Universe (so far)

