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Administrative Details
• Problem Set I due at beginning of class today!
• Problem Set 2 is now online; it’s due next Friday

• If Mountain Day, drop in instructor’s mailbox by 6pm

• Lab 4 Wednesday: Sorting!
• The lab has been posted on the Labs page
• You may again work with a partner

• Needn’t be same partner as Lab 3
• Fill out the Google Form!

• Produce a design before lab
• Each member of pair should produce their own and 

then discuss/decide on final design 2



Last Time

• Strong Induction
• Basic Sorting
• Bubble, Insertion, Selection Sorts
• Including time and space analysis

• The Comparable Interface
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This Time

• Wrap-up of Comparable Interface
• Better Sorting Methods
• MergeSort
• QuickSort

• More Flexible Comparing: Comparator Interface
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Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the 

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 5



Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge
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Merge Sort : Pseudo-code
• How would we design it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[],  int from, int to)

if ( from ≤ to )
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
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Merge Sort : Java Implementation
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)? 
• Need an extra array, so really O(2n)!  But O(2n) = O(n)
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Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9]    split

• [8 14] [29 1] [17 39] [16 9]    split
• [8] [14] [29] [1] [17] [39] [16] [9]   split
• [8 14] [1 29] [17 39] [9 16]  merge
• [1 8 14 29] [9 16 17 39]  merge

• [1 8 9 14 16 17 29 39]  merge

log n

log n

merge takes at most n comparisons per line
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Time Complexity Proof

• Prove for n = 2k (true for other n but harder)

• That is, MergeSort for  performs at most

• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base cases k ≤ 1: 0 comparisons: 0 < 1 ∗ 21 ✓

• Induction Step: Suppose true for all integers 
smaller than k. Let T(k) be # of comparisons 
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓
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Merge Sort

• Unlike Bubble, Insertion, and Selection sort, 
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n) 

• Are there any limitations with Merge sort?
• Why would we ever use any other algorithm 

for sorting?
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Drawbacks to Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth 
between original array and temporary array

• Can we avoid this?
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Quick Sort

• Quick sort is designed to behave much like 
Merge sort, without requiring extra storage 
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts
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Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;   
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);    
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}
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Partition

1. Put first element (pivot) into sorted position
2. All to the left of “pivot” are smaller and all 

to the right are larger

3. Return index of “pivot”
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Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;    
if (left < right) {

swap(data,left++,right);
} else {

return left;           
}

while (left < right && data[left] < data[right]) 
left++;

if (left < right) {
swap(data,left,right--); 

} else {
return right;    

}         
}    

} 16



Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as 

merge sort, so O(n log n)
• If data is already sorted, partition splits list into 

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort
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Merge vs. Quick (Average Time)

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

18



Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster

• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is 

almost sorted (partitions are very unbalanced)
• Heuristic!
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Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if  “optimiazed”

O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
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More Skill-Testing
(Try these at home)

Given the following list of integers:
9  5  6  1  10  15  2  4

1) Sort the list using Bubble sort.  Show your work!
2) Sort the list using Insertion sort. .  Show your work!
3) Sort the list using Merge sort. .  Show your work!
4) Verify the best and worst case time and space 

complexity for each of these sorting algorithms as 
well as for selection sort.
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Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?

• What if it isn’t implemented?

• Solution: Comparators 
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Comparators (Ch 6.8)

• A comparator is an object that contains a method that 
is capable of comparing two objects

• Sorting methods can be written to apply a comparator 
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data 
to sort in different orders or on different keys

public interface Comparator <E> { 
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b 
public int compare(E a, E b); 

} 
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Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does 
not implement
Comparable or 
Comparator!
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Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method

• Changing order requires rewriting compareTo
• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
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Selection Sort with Comparator
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public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++) 

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different 
Comparator<E> values to the sort method;



Sorting Material Ends Here



Class Specialization

• Classes can extend other classes
• Inherit fields and method bodies

• By extending other classes, we can create 
specialized sub-classes

• Java supports class extension/specialization
• Java enforces type-safety: Objects behave 

according to their type 
• Some checks are made at compile-time
• Some checks are made at run-time

• We’ll first use this feature to factor out code
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Abstract Classes

• Note: All of our Card implementations code 
toString() in identical fashion.

• It’s good to be able to “factor out” common code so 
that it only has to be maintained in one place

• Abstract classes to the rescue….
• An abstract class allows for a partial implementation
• We can then extend it to a complete implementation

• Let’s do this with our cards.
• Examine CardAbstract.java....

29



Abstract Classes

Notes from CardAbstract class example
• CardAbstract implements Card (partially)
• CardAbstract is declared to be abstract

• It contains the implementation of toString()

How do the full implementations (CardRankSuit, etc) change?
• They are declared to extend CardAbstract
• They don’t need to say “implements Card”

• They don’t contain the toString() method
• They inherit that method from CardAbstract

• But could override that method if desired
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Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

• Suppose we wanted to add a point value to each of 
the playing cards in CardRankSuit

• We extend that class
class CardRankSuitPoints extends CardRankSuit {… }

• This new class can now contain additional instance 
variables and methods

• Let’s look at the code for CardRankSuitPoints.java….
31



CardRankSuitPoints Notes
• Constructor calls CardRankSuit constructor using super

• We can override methods---e.g., toString()
• Can use a CardRankSuitPoints object wherever we use a 
Card
• But! Can only use new features (getPoints()) if the 

object is declared to be of type CardRankSuitPoints
CardRankSuitPoints c1 = new CardRankSuitPoints( 

Rank.ACE, Suit.CLUBS, 4);

int p1 = c1.getPoints(); // Legal

Card c2 = new CardRankSuitPoints(Rank.ACE, 
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card

int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

• Java enforces type-safety: An variable of type X can only be 
assigned a value of type X or of a type that extends X 32



The Card Classes Hierarchy
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compareTo in Card Example

We actually wrote (in Card.java)

public interface Card extends Comparable<Card> {
public int compareTo(Card other);
// remainder of interface code

}

And in CardAbstract.java, we added

public int compareTo(Card other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}



Class/Interface Hierarchy

Comparable

Card

AbstractCard

CardRankSuit

extends Comparable<Card>

implements Card

extends AbstracctCard

• As a result, all of our implementations of the 
Card interface have comparable card types!


