
CSCI 136
Data Structures &

Advanced Programming

Lecture 10
Fall 2019

Instructors: B&S

Administrative Details
• Problem Set I due at beginning of class today!
• Problem Set 2 is now online; it’s due next Friday

• If Mountain Day, drop in instructor’s mailbox by 6pm

• Lab 4 Wednesday: Sorting!
• The lab has been posted on the Labs page
• You may again work with a partner

• Needn’t be same partner as Lab 3
• Fill out the Google Form!

• Produce a design before lab
• Each member of pair should produce their own and

then discuss/decide on final design 2

Last Time

• Strong Induction
• Basic Sorting
• Bubble, Insertion, Selection Sorts
• Including time and space analysis

• The Comparable Interface

3

This Time

• Wrap-up of Comparable Interface
• Better Sorting Methods
• MergeSort
• QuickSort

• More Flexible Comparing: Comparator Interface

4

Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 5

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

6

Merge Sort : Pseudo-code
• How would we design it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
7

Merge Sort : Java Implementation
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)! But O(2n) = O(n)

8

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

9

Time Complexity Proof

• Prove for n = 2k (true for other n but harder)

• That is, MergeSort for performs at most

• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base cases k ≤ 1: 0 comparisons: 0 < 1 ∗ 21 ✓

• Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓

10

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n)

• Are there any limitations with Merge sort?
• Why would we ever use any other algorithm

for sorting?

11

Drawbacks to Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

12

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

13

Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

14

Partition

1. Put first element (pivot) into sorted position
2. All to the left of “pivot” are smaller and all

to the right are larger

3. Return index of “pivot”

15

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 16

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

17

Merge vs. Quick (Average Time)

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

18

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster

• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

19

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimiazed”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

20

More Skill-Testing
(Try these at home)

Given the following list of integers:
9 5 6 1 10 15 2 4

1) Sort the list using Bubble sort. Show your work!
2) Sort the list using Insertion sort. . Show your work!
3) Sort the list using Merge sort. . Show your work!
4) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

21

Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?

• What if it isn’t implemented?

• Solution: Comparators

22

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

23

Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

24

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method

• Changing order requires rewriting compareTo
• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
25

Selection Sort with Comparator

26

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Sorting Material Ends Here

Class Specialization

• Classes can extend other classes
• Inherit fields and method bodies

• By extending other classes, we can create
specialized sub-classes

• Java supports class extension/specialization
• Java enforces type-safety: Objects behave

according to their type
• Some checks are made at compile-time
• Some checks are made at run-time

• We’ll first use this feature to factor out code
28

Abstract Classes

• Note: All of our Card implementations code
toString() in identical fashion.

• It’s good to be able to “factor out” common code so
that it only has to be maintained in one place

• Abstract classes to the rescue….
• An abstract class allows for a partial implementation
• We can then extend it to a complete implementation

• Let’s do this with our cards.
• Examine CardAbstract.java....

29

Abstract Classes

Notes from CardAbstract class example
• CardAbstract implements Card (partially)
• CardAbstract is declared to be abstract

• It contains the implementation of toString()

How do the full implementations (CardRankSuit, etc) change?
• They are declared to extend CardAbstract
• They don’t need to say “implements Card”

• They don’t contain the toString() method
• They inherit that method from CardAbstract

• But could override that method if desired

30

Extending Concrete Classes

Let’s call a class concrete if it is not abstract
We can extend concrete classes
Example: Adding a point count to a Card

• Suppose we wanted to add a point value to each of
the playing cards in CardRankSuit

• We extend that class
class CardRankSuitPoints extends CardRankSuit {… }

• This new class can now contain additional instance
variables and methods

• Let’s look at the code for CardRankSuitPoints.java….
31

CardRankSuitPoints Notes
• Constructor calls CardRankSuit constructor using super

• We can override methods---e.g., toString()
• Can use a CardRankSuitPoints object wherever we use a
Card
• But! Can only use new features (getPoints()) if the

object is declared to be of type CardRankSuitPoints
CardRankSuitPoints c1 = new CardRankSuitPoints(

Rank.ACE, Suit.CLUBS, 4);

int p1 = c1.getPoints(); // Legal

Card c2 = new CardRankSuitPoints(Rank.ACE,
Suit.CLUBS, 4);

int p2 = c2.getPoints(); // Bad! c2 is of type Card

int p3 = ((CardRankSuitPoints) c2).getPoints(); // Legal

• Java enforces type-safety: An variable of type X can only be
assigned a value of type X or of a type that extends X 32

The Card Classes Hierarchy

33

compareTo in Card Example

We actually wrote (in Card.java)

public interface Card extends Comparable<Card> {
public int compareTo(Card other);
// remainder of interface code

}

And in CardAbstract.java, we added

public int compareTo(Card other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}

Class/Interface Hierarchy

Comparable

Card

AbstractCard

CardRankSuit

extends Comparable<Card>

implements Card

extends AbstracctCard

• As a result, all of our implementations of the
Card interface have comparable card types!

