
CSCI 136
Data Structures &

Advanced Programming

Fall 2019
Instructors

Bill Lenhart & Samuel McCauley

2

Administrative Details

• Class roster: Who’s here?
• And who’s trying to get in?

• Handout: Class syllabus
• Lecture location: Schow 030a
• Lab: Wed 12-2 or 2-4 (go to assigned lab!)
• Lab location: TCL 217a (Lenhart) & 216 (McCauley)
• Lab entry code: I hope you memorized it in classs!
• Course Webpage:

http://cs.williams.edu/~cs136/index.html

http://cs.williams.edu/~cs136/index.html

3

Today’s Outline

• Course Preview

• Course Bureaucracy

• Java (re)fresher–Part 1

4

Why Take CS136?

• To learn about:
• Data Structures

• Effective ways to store and manipulate data

• Advanced Programming
• Use structures and techniques to write programs that

solve interesting and important problems

• Basics of Algorithm Analysis
• Measuring algorithm complexity
• Establishing algorithm correctness

5

Squad* Goals
• Identify basic data structures

• list, stack, array, tree, graph, hash table, and more

• Implement these structures in Java
• Learn how to evaluate and visualize data structures

• Linked lists and arrays both represent lists of items
• Different representations of data
• Different algorithms for manipulating/accessing/storing data

• Learn how to design larger programs that are easier to
modify, extend, and debug

• Have fun!

*Bill L has a teenage daughter....

6

Common Themes

1. Identify data for problem
2. Identify questions to answer about data
3. Design data structures and algorithms to answer

questions correctly and efficiently (Note: not all
correct solutions are efficient, and vice versa!)

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks

7

8

Finding Shortest Paths

• The data: road segments
• Road segment: Source, destination, length (weight)

• The question
• Given source and destination, compute the shortest path

from source

• The algorithm: Dijkstra’s Algorithm
• The data structures (spoiler alert!)
• Graph: holds the road network in some useful form
• Priority Queue: holds not-yet-inspected edges
• Also uses: Lists, arrays, stacks, ...

• A quick demo….

9

Course Outline

• Java review
• Basic structures

• Lists, vectors, queues, stacks

• Advanced structures
• Graphs, heaps, trees, dictionaries

• Foundations (throughout semester)
• Vocabulary
• Analysis tools
• Recursion & Induction
• Methodology

10

Syllabus Highlights

• How to contact us
• Bill Lenhart (TPL 304)

• Office hours: TBA
• mailto:wlenhart@williams.edu

• Sam McCauley (TCL 209)
• Office hours: TBA
• mailto:sam@cs.williams.edu

• Textbook
• Java Structures: Data Structures in Java for the Principled

Programmer, Ö7 Edition (by Duane Bailey)
• Take one: You’re already paying for it!

• Weekly labs, problem sets, mid-term & final exams....

mailto:wlenhart@williams.edu
mailto:sam@cs.williams.edu

11

Honor Code and Ethics

• College Honor Code and Computer Ethics
guidelines can be found here:
• https://sites.williams.edu/honor-system/
• https://oit.williams.edu/policies/ethics/

• You should also know the CS Department
computer usage policy.
• https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

• If you are not familiar with these items, please
review them.

• We take these things very seriously…

https://sites.williams.edu/honor-system/
https://oit.williams.edu/policies/ethics/
https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/

13

Your Responsibilities

• Come to lab and lecture on time
• Read assigned material before class and lab

• Bring textbook to lab (or be prepared to use PDF)
• Bring paper/pen(cil) to lab for brain-storming, …

• Come to lab prepared
• Bring design docs for program
• 1 Prof + 1TA == help for you: take advantage of this

• Do NOT accept (prolonged) confusion! Ask
questions

• Your work should be your own. Unsure? Ask!
• Participate

14

Accounts and Passwords

• Mandatory: Before the first lab
• Talk to Lida Doret about your CS account

• Lida manages our systems. She will be available
• Today: 9/6: 10:00-10:45 am, 12:00-12:45 pm
• Mon., 9/9: 10:00-10:45 am
• Tues., 9/10: 11:00-11:45 am

• Her office is on the second floor (TCL 205)
• Get this sorted out before lab on Wednesday!

15

Why Java?

• There are lots of programming languages…
• C, Pascal, C++, Java, C#, Python

• Java was designed in 1990s to support Internet
programming

• Why Java?
• It’s easier (than predecessors like C++) to write correct

programs
• Object-oriented – good for large systems
• Good support for abstraction, extension, modularization
• Automatically handles low-level memory management
• Very portable

16

How we will code

• Command-line tools
• Atom: A modern, easy-to-use code editor

• Set up already on lab computers
• Start now if you want to code at home
• Ask us for help if you need it, especially with

Windows

17

Java Over/Review (Crash Course)

18

Java
/*
* This program prints a message.
*/

public class Hello {
// Print a message.

public static void main(String[] args) {

System.out.println("Hello CS136!");

}

}

19

Java

Edit/Compile/Run cycle
• Edit: Save Java source code in file Hello.java
• Compile: javac Hello.java

• Produces Java bytecode file named Hello.class

• Execute: java Hello
• Searches Hello.class for a method with signature

public static void main(String[])
• Executes that method (if it exists)

20

Java
Notes
• Multi- and single-line comments
• Code is wrapped in a class declaration

• Everything is (in) a class in Java
• File name should be same as declared class name
• System is a Java class holding an object called out
• out is of class type PrintStream

• The parameter args is an array of String
• Passed to the main method from the command line
• Contains every string on the command line after java Hello

• This allows passing values into program
• Can replace args with any other variable name…

21

Java
/* This program prints words. */

public class Hello2 {

public static void main(String[] CLParams) {

for(int i = 0; i < CLParams.length; i++) {

System.out.println(CLParams[i]);

}

}

}

22

Java
Notes
• Changed args to CLParams
• Every array stores its size: CLParams.length

• It’s a data member, not a method call

• Java for loop
for(initialization; continuation; update)

{ statement ; … statement ; }
• Equivalent to Java while loop

initialization;
while (continuation) {

statement ; … statement ;
update;

}

23

Java
/* This program prints words. */

public class Hello3 {

public static void main(String[] CLParams) {

int i = 0;
while(i < CLParams.length) {

System.out.println(CLParams[i]);
i++;

}
}

}

24

Java
/* This program prints words. */
public class Hello4 {

public static void main(String[] CLParams) {

if(CLParams.length == 0) {
System.out.println("Hello CS136!");

}

else {
for(int i = 0; i < CLParams.length; i++) {

System.out.println(CLParams[i]);
}

}
}

}

25

Java
/* This program prints words.
* {} can be omitted for single-statement blocks
*/

public class Hello5 {
public static void main(String[] CLParams) {

if(CLParams.length == 0)

System.out.println("Hello CS136!")

else
for(int i = 0; i < CLParams.length; i++)

System.out.println(CLParams[i]);

}
}

26

Primitive Types
• Provide numeric, character, and logical values

• 11, -23, 4.21, ‘c’, false

• Can be associated with a name (variable)
• Variables must be declared before use

int age; // A simple integer value
float speed; // A number with a ‘decimal’ part
char grade; // A single character
bool loggedIn; // Either true or false

• Variables can be initialized when declared
int age = 21;
float speed = 47.25;
char grade = ‘A’;
bool loggedIn = true;

27

Array Types
• Holds a collection of values of some type
• Can be of any type

int[] ages; // An array of integeras
float[] speeds; // An array of floats
char[] grades; // An array of characters
bool[] loggedIn; // Either true or false

• Arrays can be initialized when declared
int[] ages = { 21, 20, 19, 19, 20 };
float[] speeds = { 47.25, 3.4, -2.13, 0.0 };
char[] grades = { ‘A’, ‘B’, ‘C’, ‘D’ };
bool[] loggedIn = { true, true, false, true };

• Or just created with a standard default value
int[] ages = new int[15]; // array of 15 0s

28

Sum 1
class Sum1 {

public static void main(String[] args) {

if (args.length < 2)
System.out.println("Syntax: java Sum3 num1 num2");

else {
int n0 = Integer.valueOf(args[0]);
int n1 = Integer.valueOf(args[1]);
System.out.println(n0 + " + " + n1 + " = " + (n0 + n1));

}
}

}

29

Sum 2
class Sum2 {

public static void main(String[] args) {

if (args.length == 0)
System.out.println(0);

else {
int total = 0;
for (int i = 0; i < args.length; i++)

total = total + Integer.valueOf(args[i]);

System.out.println("The sum equals " + total);
}

}
}

30

Sum 3
class Sum3 {

public static void main(String[] args) {

if (args.length == 0)
System.out.println(0);

else {
int total = 0;

// 'for-each' version of for loop
for (String num : args)

total = total + Integer.valueOf(num);

System.out.println("The sum equals " + total);
}

}
}

31

Sum 4
class Sum4 {

// Create a new Scanner, read two integers, print their sum.

public static void main(String[] args) {

// create a new scanner for the terminal input
Scanner in = new Scanner(System.in);

System.out.print("Give me a number: ");
int n1 = in.nextInt();
System.out.print("Give me another number: ");
int n2 = in.nextInt();

System.out.println(n1 + " + " + n2 + " = " + (n1 + n2));
}

}

32

Sum 5
class Sum5 {

// Create a Scanner, read in integers, and print their sum.
public static void main(String[] args) {

// create a scanner for the terminal input
Scanner in = new Scanner(System.in);

int total = 0; // running sum

System.out.print("Give me a number (ctrl-d to end): ");
while (in.hasNext()){

int n = in.nextInt();
total += n;

}

System.out.println("\nThe total is " + total);
}

}

33

Sample Programs

• Sum1.java … Sum5.java
• Programs that adds integers

• Of Note:
• System.in is of type InputStream
• Scanner class provides parsing of text streams (terminal

input, files, Strings, etc)
• Integer.valueOf(...) converts String to int
• Static values/methods: in, out, valueOf, main

Summary

Basic Java elements so far
• Primitive and array types
• Variable declaration and assignment

• Some control structures
• for, for-each, while, do-while

Some basic unix commands
• Edit (Atom), Compile (javac), run (java) cycle

34

35

Next time…

More Java and Object-oriented programming

