Handout 11

Sample Final Exam O Doarabor

This is a closed book exam. You have 150* minutes to complete the exam. You may use the back of
the preceding page for additional space if necessary, but be sure to mark you answers clearly.

Be sure to give yourself enough time to answer each question— the points should help you manage
your time.

In some cases, there may be a variety of implementation choices. The most credit will be given to
the most elegant, appropriate, and efficient solutions.

Problem | Points | Description Score
1 10 Short Answer

2 10 Queues

3 10 StackSort

4 10 Heaps

5 10 Binary Trees

6 10 Hashing

7 10 AVL Trees

8 10 Time Complexity
9 10 Graphs

Total 90

I have neither given nor received aid on this examination.

Signature:

Name:

*In fact, 150 minutes may be too little time for these problems! This is a problem suite to help you prepare for the exam. The
actual final will most likely have 7-8 questions.



1. TOPOINTS) e e Short Answer

Show your work and justify answers where appropriate.

a. A tree with n distinct elements is both a min-heap and a binary search tree. What must it
look like?

The tree consists of n — 1 nodes that have a right child, but no left child. There is also a
single leaf node with no children. For example, here is the tree for n = 3:

b. Which tree traversal would you use to print an expression tree in human-readable form?

In-order traversal. This would mean that the operation would appear in between the two
operands, as humans generally expect. For example, the following expression tree:

Would give the equation 3 x4 + 5.

c. Which tree traversal would you use to evaluate an expression tree?

Post-order traversal. As we saw in class, post-order traversal allows for easy stack-based
expression evaluation. And it avoids potential issues with order of operations.

d. We applied sorting methods primarily to arrays and vectors. Of the following sort algo-
rithms, which would you use to sort a SinglyLinkedList: insertion sort, selection sort,
quicksort, merge sort? Briefly explain your answer.

Merge sort is likely the easiest, as it does not require random access. We do need to break
the linked list in half, but this can easily be done with a traversal.

Brief discussion of other options:

e Quicksort would need a new partition method that works on linked lists (this is pos-
sible, especially if the partition method creates two new linked lists to partition into).

e Selection sort can be done if implemented carefully: at the ith for loop iteration, you
must find the smallest element among elements i + 1,...n — 1 stored in the linked list.
This can be placed at the head of the list.

e Insertion sort is very difficult to implement, but is likely possible with sufficient care.

e. When we rewrite a recursive algorithm to be iterative, we generally must introduce which
kind of data structure to aid in simulating the recursion?

A stack.




2. (TOPOINTS) e e e e e Queues

Recall that the Queue interface may be implemented using an array to store the queue elements.
Suppose that two int values are used to keep track of the ends of the queue. We treat the array
as circular: adding or deleting an element may cause the head or tail to “wrap around” to the
beginning of the array.

You are to provide a Java implementation of class CircularQueueArray by filling in the bod-
ies of the methods below. Note that there is no instance variable which stored the number of
elements currently in the queue; you must compute this from the values of head and tail. You
may not add any additional instance variables.

public class CircularQueueArray {
// instance variables

protected int head, tail;
protected Object[] data;

// constructor: build an empty queue of capacity n
public CircularQueueArray (int n) {

head = 0;

tail = 0;

data = new Object[n];

for(int 1 = 0; 1 < n; i++)
data[i] = null;

// pre: queue is not fill
// post: adds value to the queue
public void enqueue (Object wvalue) {

datal[tail] = value;
tail = (tail + 1)% data.length;




Name:

// pre: queue is not empty
// post: removes value from the head of the queue
public Object dequeue () {

Object retVal = datalhead];
data[head] = null;

head = (head + 1)% data.length;
return retVal;

// post: return the number of elements in the queue
public int size() {

if (isFull())
return data.length;

if (head <= tail)
return tail - head;
return data.length - (head - tail);

// post: returns true iff queue is empty
public boolean isEmpty () {

return head == tail && datalhead] == null;

// post: returns true iff queue is full
public boolean isFull () {

return head == tail && datalhead] != null;




B. (TOPOINES) e e e Stacks

Suppose you are given an iterator that will let you access a sequence of Comparable elements.
You would like to sort them, but the only data structure available to you is an implementation of
the stack interface in the structure5 package (say, StackList), and memory constraints only
allow you to make a small (constant) number of stacks. Because the elements are available only
through an Iterator, so you must process each item as it is returned by the next () method of
the Tterator. The sort method should return a Stack containing the sorted elements, with the
smallest at the top of the stack. Please fill in the body of the method.

public static <E extends Comparable<E>>
Stack<E> StackSort (Iterator<E> iter) {

// pre: iter 1is Iterator over structure containing elements of type E
// post: a Stack is returned with the elements sorted, smallest on top

Stack<E> retStack = new StackList<E>();
Stack<E> tempStack = new StackList<E>();
while (iter.hasNext ()) {

E cur = iter.next ();

//pop everything smaller than cur from retstack
while (!retStack.empty () ) {
if (cur.compareTo (retStack.peek()) <= 0) //found the spot for cur
break;
tempStack.push (retStack.pop());

}
retStack.push (cur) ;

while (!tempStack.empty())
retStack.push (tempStack.pop());
}

return retStack;




B, (TOPOINTS) <. Heaps

Recall the definition of a min-heap, a binary tree in which each node’s value is no bigger than that
of each of its descendants. For the rest of this question, we presume the Vector implementation
of heaps (class VectorHeap). Consider the following tree, which is a min-heap.

a. Show how the elements would be stored in the Vector underlying our VectorHeap.

0 1 2 3 4 5 6 7 8 9 10 11

b. Show the steps involved in adding the value 4 to the heap. Use drawings of the tree, not
the vector.

We insert 4 as the leftmost leaf on the last level, and then percolate up.

(Answer continued on next page...)




c. Using the original tree (not the one with the 4 added), show the steps involved in removing the
minimum value of the heap.

First we swap the root with the rightmost leaf at the last level and remove it. Then we push
down, repeatedly swapping the inserted element with its smaller child until it is larger than

both of its children.

(Answer continued on next page...)







d. Why is the Vect orHeap implementation of a priority queue better than one that uses a linked
list implementation of regular queues, modified to keep all items in order by priority? Hint: Your
answer should compare the complexities of the add and remove operations.

The VectorHeap implementation requires O(logn) time for both add and remove. A linked list
implementation would require O(n) time for add and O(1) time for remove. This means that a
VectorHeap is much better—the huge increase in time for add is not made up by the improved
time for remove.




5. (T0POINTS) e Binary Trees

Suppose we have a BinaryTree<E> that contains only Comparable values.

a. It is often useful to find the minimum and maximum values in the tree. Implement the method
maximum as a member of class BinaryTree. Relevant sections of BinaryTree. java from the
structure5 package are included on pages 12-14 to guide you. Your method should return the
Comparable that is the maximum value in the tree. It should return nul1l if called on an empty
tree.

public static <E extends Comparable<E> > E maximum(BinaryTree<E> tree) {
// post: the maximum value in the tree is returned

if (tree.isEmpty())
return null;

E maxLeft = maximum(tree.left ());

E maxRight = maximum(tree.right ());

E largestChild;

if (maxRight == null ||

(maxLeft != null && maxLeft.compareTo (maxRight) > 0)) {

largestChild = maxLeft;

} else {
largestChild = maxRight;

}

if(largestChild == null || tree.value() .compareTo (largestChild) > 0)
return tree.value();

return largestChild;

}

b. What is the worst-case complexity of maximum on a tree containing n values?

O(n)—the method recursively searches every node of the tree, and performs only O(1) operations
at each node.

c. What is the complexity of maximum on a full tree containing n values?

O(n)—the method recursively searches every node of the tree, and performs only O(1) operations
at each node.
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d. Consider the following method:

public static <E extends Comparable<E>> boolean isBST (BinaryTree<E> tree) {
// post: returns true iff the tree rooted here is a binary search tree
if (tree.isEmpty()) return true;
return isBST (tree.left ()) && isBST(tree.right());

As written, this method will not always return the correct value. Explain why, then provide a
correct method. You may use minimum () and maximum () from part (a), as well as any other
methods of BinaryTree.

The method does not check that the root is larger than its left child and smaller than its right
child, so we do not know if the BST property is maintained.

public static <E extends Comparable<E>> boolean isBST (BinaryTree<E> tree) {
// post: returns true iff the tree rooted here is a binary search tree
if (isEmpty()) return true;

return isBST (tree.left()) && isBST (tree.right()) &&
(tree.left () .isEmpty ()
|| tree.value () .compareTo (tree.left ().value()) >= 0) &&
(tree.right () .isEmpty ()
|| tree.value () .compareTo (tree.right () .value()) < 0);

Note that we need to put checks in to ensure that the left and right child of t ree are nonempty,
as otherwise their values are null and the call to compareTo may give an error.

e. In class BinaryTree<E>, why is the setLeft () method public, but the setParent ()
method is protected?

The setParent () method is protected to ensure that the references are correctly maintained
by the tree. In particular, we want a tree BinaryTree<E> parent to be the parent of a tree
BinaryTree<E> tree exactly when tree is a child of parent. By keeping this method pro-
tected, we ensure that setParent () is only called by setLeft () or setRight ().
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public class BinaryTree<E>{
protected E val; // value associated with node
protected BinaryTree<E> parent; // parent of node
protected BinaryTree<E> left; // left child of node
protected BinaryTree<E> right; // right child of node

// A one-time constructor, for constructing empty trees.
private BinaryTree () {

val = null;

parent = null;

left = right = this;

// Constructs a tree node with no children. Value of the node
// 1s provided by the user
public BinaryTree (E value) {

val = value;

parent = null;

left = new BinaryTree<E>();
right = new BinaryTree<E> () ;

// Constructs a tree node with tree children. Value of the node

// and subtrees are provided by the user

public BinaryTree (E value, BinaryTree<E> left, BinaryTree<E> right) {
this (value);

if (left == null) { left = new BinaryTree<E>(); }
setLeft (left);
if (right == null) { right = new BinaryTree<E>(); }

setRight (right) ;

// Get left subtree of current node
public BinaryTree<E> left () {
return left;

// Get right subtree of current node
public BinaryTree<E> right () {
return right;

// Get reference to parent of this node
public BinaryTree<E> parent () {
return parent;

// Update the left subtree of this node. Parent of the left subtree
// is updated consistently. Existing subtree is detached
public void setlLeft (BinaryTree<E> newleft) {

if (isEmpty()) return;

if (left.parent () == this) left.setParent (null);

left = newlLeft;

left.setParent (this);

// Update the right subtree of this node. Parent of the right subtree
// is updated consistently. Existing subtree is detached
public void setRight (BinaryTree<E> newRight) {
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if (isEmpty()) return;

if (right != null && right.parent () == this) right.setParent (null);
right = newRight;

right.setParent (this);

// Update the parent of this node
protected void setParent (BinaryTree<E> newParent) {
parent = newParent;

// Returns the number of descendants of node

public int size() {
if (isEmpty()) return O0;
return left().size() + right.size() + 1;

// Returns reference to root of tree containing n

public BinaryTree<E> root () {
if (parent () == null) return this;
else return parent () .root();

// Returns height of node in tree. Height is maximum path
// length to descendant
public int height () {

if (isEmpty()) return -1;

return 1 + Math.max(left.height (), right.height());

// Compute the depth of a node. The depth is the path length
// from node to root
public int depth() {

if (parent () == null) return O0;

return 1 + parent.depth();

// Returns true if tree is full. A tree is full if adding a node
// to tree would necessarily increase its height
public boolean isFull() {

if (isEmpty()) return true;

if (left () .height () != right().height()) return false;

return left () .isFull() && right().isFull();

// Returns true if tree is empty.
public boolean isEmpty () {
return val == null;

// Return whether tree is complete. A complete tree has minimal height
// and any holes in tree would appear in last level to right.
public boolean isComplete() {
int leftHeight, rightHeight;
boolean leftIsFull, rightIsFull, leftIsComplete, rightIsComplete;
if (isEmpty()) return true;
leftHeight = left () .height();
rightHeight = right () .height ();
leftIsFull = left().isFull();
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rightIsFull =
leftIsComplete =
rightIsComplete =

// case 1:

left is full,

right is complete,

right () .isFull();
left () .isComplete();
right () .isComplete () ;

heights

if (leftIsFull && rightIsComplete &&

(leftHeight == rightHeight)) return true;
// case 2: left is complete, right is full, heights
if (leftIsComplete && rightIsFull &é&

(leftHeight == (rightHeight + 1))) return true;

return false;

// Return true iff the tree is height balanced.

A tree

// balanced iff at every node the difference in heights
// no greater than one
public boolean isBalanced() {

if
return

(isEmpty ())
(Math.abs (left () .height () —right () .height ())

return true;

left () .isBalanced ()

&& right () .isBalanced();

// Returns value associated with this node
public E value() {
return val;
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6. (TODOINS) .o Hashing
a. What is meant by the “load factor” of a hash table?

The ratio of the number of objects stored in the table to the number of slots/buckets. (Bailey pg 379)

b. We take care to make sure our hash functions return the same hash code for any two equivalent (by the
equals () method) objects. Why?

If this was not the case, then two objects with equivalent keys may map to different places in the hash table.
This would cause several problems: contains () would fail, get () would fail, and put () may not detect
duplicate keys.

c. We also said that a good size for a hash table would be a prime or “almost prime” number. Why?

When using quadratic probing, using a prime number guarantees that half the buckets are searched when
attempting to find an empty slot of a given element.

d. A hash table with ordered linear probing maintains an order among keys considered during the rehash-
ing process. When the keys are encountered, say, in increasing order, the performance of a failed lookup
approaches that of a successful search. Describe how a key might be inserted into the ordered sequence of
values that compete for the same initial table entry.

This follows some of the same ideas as an Orderedvector. We search linearly through the cluster of stored
values to find the first value in the cluster that is larger than the new key. This value and all subsequent
values are then shifted down one slot, making room for the key to be inserted into the correct position.

15
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e. Is the hash table constructed using ordered linear probing as described in part (d) really just an ordered
vector? Why or why not?

No. An ordered vector is always (entirely) sorted by keys. The hash table we constructed only sorts within
each cluster. Keys that are consecutive in a global ordered might not be in the same cluster.

f. One means of potentially reducing the complexity of computing the hash code for St rings is to compute it
once — when the String is constructed. Future calls to hashCode () would return this precomputed value.
Since Java Strings are immutable, that is, they cannot change once constructed, this could work. Do you
think this is a good idea? Why or why not?

There is a tradeoff in this decision, but it is probably not a good idea for Java Strings.

The benefit of this is that this method would work—each hashcode would only need to be computed once.
However, this means that every String created in Java would have the overhead of calculating and storing
this hash (instead of just the ones used in a hash table).
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7. CTOPOINIS) e AVL Trees

a. Recall that AVL Trees do not necessarily maintain a perfect balance, but require that each tree node’s
children satisfy the AVL Condition. State the AVL condition.

For every node in the tree, the height of its left child must be within 1 of the height of its right child.

b. We could make our balance criteria more strict and require that the tree must have minimum height for
its size, but this is rarely done. Give two reasons why this is the case.

There are many reasons why this is a bad idea. We give some examples.

e It seems that this would be difficult to maintain with rotations. Instead, the tree would need to be
rebalanced in some other way (possibly rebuilding from scratch).

e It seems unlikely that this property could be maintained in O(log n) time. Each insert to the tree may
require rebalancing the entire tree.

e The benefits of this are minor. The minimum height for a tree is log, n and we showed in class that
the height of an AVL tree is log; , n, which is O(logn).

c. Label each node in the following tree with its balance factor. Is this tree an AVL tree?

d. Show the result of performing a single left rotation on nodes 23 and 42 in the following tree. This rotation
should make 42 the root of the resulting tree.
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8. (J0POINTS) .o Time Complexity

Suppose you are given n lists, each of which is of size n and each of which is sorted in increasing order.
We wish to merge these lists into a single sorted list L, with all n? elements. For each algorithm below,
determine its time complexity (Big O) and justify your result.

a. At each step, examine the smallest element from each list; take the smallest of those elements, remove it
from its list and add it to the end of L. Repeat until all input lists are empty.

Finding the minimum of the n smallest elements takes O(n) time. We must do this for each of the n?
elements in L. Multiplying, we obtain O(n?®) time.

b. Merge the lists in pairs, obtaining % lists of size 2n. Repeat, obtaining % lists of size 4n, and so on, until
one list remains.

Merging two lists with n’ total elements takes O(n') time, as we saw in class. Each time we do a round of
merges, we merge all n? elements; therefore each round takes O(n?) time.

Each round of merges divides the size of each list by 2. Therefore, this process takes O(logn) rounds.

Multiplying the number of rounds by the cost of each round, we obtain total time O(n?logn).
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Q. (TOPOINTS) ... Graphs

a. In studying Prim’s Algorithm, we saw that some edges removed from the priority queue are not useful
in that they lead to a vertex we have already visited. How is this possible, given that we insert only edges
leading to unvisited vertices into the priority queue?

When the edge was originally inserted, the vertex was not visited. However, before the edge is removed
from the priority queue, it could be that the vertex was visited via another, cheaper edge.

b. Recall the Trie structure you implemented for the Lexicon lab. It was a general tree, where a node in the
tree could have an arbitrary number of children. Trees are nothing more than graphs with some restrictions
on the edges allowed. You could store the same information in a Graph by making a Vertex for each tree
node and adding Edges representing the links to the children. Which Graph implementation would you use
for this, and why? How does its time and space complexity compare to your Trie implementation?

As we discussed in class, a list representation is much better when the graph is relatively sparse (the
number of edges is not much more than the number of verticies). In the Trie structure we implemented,
each node had at most 26 children—almost always much smaller than the number of nodes.

In fact, we can show that the number of edges is always small. Each edge connects a node to its parent, but
we know that in a Trie (in fact in any tree) every node has at most one parent. Therefore, the total number
of edges is at most the number of nodes.

The time and space complexity is similar. In fact, my Trie stored the children of each node in an Ordered-
Vector, and the GraphList structure stores them in a list. In both cases, we potentially scan all the children
for add or contains;in both cases the total space is O(|V| + |E|).

c. Consider the following definition of a graph.

Def: A graph G consists of a set V, whose members are called the vertices of G, together with a set F, of
edges, which are pairs of distinct vertices from V' (no edges from a vertex back to itself, and there cannot be
two different edges between the same pair of vertices).

Prove by induction that an undirected graph G with n vertices has at most n(n — 1)/2 edges.

Base Case: A graph with one vertex has no edges, and 1(1 — 1)/2 = 0.
Inductive hypothesis: Any graph G’ with n — 1 vertices has at most (n — 1)(n — 2)/2 edges.

Inductive step: Consider a graph G with n vertices. Remove one of the vertices, and all incident edges.
Let x be the number of edges removed; because edges are between distinct vertices we must have z < n — 1.
We are left with a graph G’ with n — 1 vertices. By the inductive hypothesis, the number of edges in G’ is at
most (n — 1)(n — 2)/2.

The number of edges in G is at most = plus the number of edges in G’. Since z < n — 1, and the number of
edges in G’ is at most (n — 1)(n — 2)/2, the number of edges in G is at most n — 1 + (n — 1)(n — 2)/2.

Simplifying,

(n—1)(n-2) 2n—-2 n’>-3n+2 n’-n

—1
b 2 2 2 2

=n(n—1)/2
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