
CSCI 136: Fall 2019
Handout Heapsort Example

Heapsort

This handout goes through an example of how heapsort functions on the following array A:∗

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11

Heapsort on an array of size n works in two steps. First, heapify() is called on the array to turn it into a heap.
Then, for i = n− 1 to 0, remove() is called, and the resulting element is stored in slot i; the heap is then considered
to be one element smaller.

1 Heapify
As we discussed in class, we want to use Bottom-Up Heapify, as it runs in O(n) time. To accomplish this, for j = n−1
to 0, we call pushDownRoot(j). On the right we show what the array looks like after the corresponding step, with
arrows to indicate any swaps that were performed during that step. We highlight in red the nodes from j to n − 1;
these nodes satisfy the heap property.

pushDownRoot(14): The children of 14
are 29 and 30; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(13): The children of 13
are 27 and 28; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(12): The children of 12
are 25 and 26; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(11): The children of 11
are 23 and 24; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(10): The children of 10
are 21 and 22; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(9): The children of 9
are 19 and 20; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(8): The children of 8
are 17 and 18; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(7): The children of 7
are 15 and 16; both are not stored in the
heap, so the heap property is satisfied.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

∗We use an array in this example, but heapsort would work just as well on a vector.

1



A side note: at this point you may have noticed that we’ve wasted a lot of time looking at elements that do not have
children. You’re right! A good heapify implementation would skip right to elements with children: it would call
pushDownRoot(j) for j = (n− 2)/2 to 0.

pushDownRoot(6): The children of 6
are 13 and 14. A[6] = 6 is smaller than
A[13] = 38 and A[14] = 11, so no swaps
are necessary.

7 3 1 12 4 37 6 42 8 9 2 13 5 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(5): The children of 5
are 11 and 12. A[5] = 37 is not smaller
than A[11] = 13 (or A[12] = 5), so we need
to swap. Pushdown() always swaps with
the smaller child. Since A[12] < A[11], we
swap A[5] with A[12]. The children of 12
are not in the heap so we are done.

7 3 1 12 4 5 6 42 8 9 2 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(4): The children of 4
are 9 and 10. A[4] = 4 is smaller than
A[9] = 9, but is larger than A[10] = 2. We
swap with the smaller child. The children
of 10 are not in the heap so we are done.

7 3 1 12 2 5 6 42 8 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(3): The children of 3
are 7 and 8. A[3] = 12 is larger than
A[8] = 8; we swap with the smaller child.
The children of 8 are not in the heap so we
are done.

7 3 1 8 2 5 6 42 12 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(2): The children of 2
are 5 and 6. A[2] is smaller than A[5] and
A[6], so we don’t swap.

7 3 1 8 2 5 6 42 12 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(1): The children of 1
are 3 and 4. A[1] is larger than A[4] and
A[4] < A[3] so we swap with A[4]. The
children of 4 are 9 and 10. A[4] is smaller
than A[9] and A[10] so we don’t swap.

7 2 1 8 3 5 6 42 12 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pushDownRoot(0): The children of 0
are 1 and 2. A[0] is larger than A[2] and
A[2] < A[1] so we swap with A[2]. The
children of 2 are 5 and 6. A[2] = 7 is larger
than A[5] = 5 and A[5] < A[6] = 6 so we
swap with A[5]. After this, A[5] < A[11]
and A[5] < A[12] so we are done.

1 2 5 8 3 7 6 42 12 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

After O(n) calls to pushDownRoot, we have a heap! As we showed in class, this actually takes O(n) total work in
the worst case. Now we need to sort.

2



2 Sort By Repeatedly Removing the Minimum
Now we sort. As discussed in class, for i = n − 1 to 0, we remove the minimum element of the heap and place it in
A[i]. This is particularly easy for a heap, as the first step in remove() is to swap the first and last item in the heap.
After that, pushDownRoot(0) is called.
So after round i, the i smallest elements are in reverse-sorted order from A[i] to A[n−1]; meanwhile A[0] to A[i−1] is
a heap. Again we go round by round. We show the state of the array after each round, and show the swaps made during
the round using arrows. Again, cells highlighted in red form a heap; cells highlighted in blue are in reverse-sorted
order. We begin with the heap obtained from before:

1 2 5 8 3 7 6 42 12 9 4 13 37 38 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now we begin our calls to remove.

(i = 14): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[1], A[1] is swapped with A[4], and A[4]
is swapped with A[10].

2 3 5 8 4 7 6 42 12 9 11 13 37 38 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 13): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[1], A[1] is swapped with A[4], and A[4]
is swapped with A[9].

3 4 5 8 9 7 6 42 12 38 11 13 37 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 12): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[1], A[1] is swapped with A[3], and A[3]
is swapped with A[8].

4 8 5 12 9 7 6 42 37 38 11 13 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 11): We swap A[0] with A[i] and call
Pushdown(0). A[0] is swapped with A[2]
and A[2] is swapped with A[6].

5 8 6 12 9 7 13 42 37 38 11 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 10): We swap A[0] with A[i] and call
Pushdown(0). A[0] is swapped with A[2]
and A[2] is swapped with A[5].

6 8 7 12 9 11 13 42 37 38 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 9): We swap A[0] with A[i] and call
Pushdown(0). A[0] is swapped with A[2]
and A[2] is swapped with A[5].

7 8 11 12 9 38 13 42 37 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 8): We swap A[0] with A[i] and call
Pushdown(0). A[0] is swapped with A[1]
and A[1] is swapped with A[4].

8 9 11 12 37 38 13 42 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 7): We swap A[0] with A[i] and call
Pushdown(0). A[0] is swapped with A[1]
and A[1] is swapped with A[3].

9 12 11 42 37 38 13 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 6): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[2].

11 12 13 42 37 38 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3



(i = 5): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[1], and A[1] is swapped with A[4].

12 37 13 42 38 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 4): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[2].

13 37 38 42 12 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 3): We swap A[0] with A[i] and
call Pushdown(0). A[0] is swapped with
A[1].

37 42 38 13 12 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 2): We swap A[0] with A[i] and call
Pushdown(0). No swaps are needed.

38 42 37 13 12 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i = 1): We swap A[0] with A[i] and call
Pushdown(0). No swaps are needed.

42 38 37 13 12 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

And we’re done! Our array is in sorted order:

42 38 37 13 12 11 9 8 7 6 5 4 3 2 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Well, it’s in reverse sorted order. If we want, we can reverse it in O(n) time.
Side note: There are techniques one can use to avoid this final step—for example, by using a “max heap,” which is
exactly like a heap but with the property that each node is larger than its children. Calling remove() on a max heap
gives the largest node, ultimately resulting in a sorted array with no reversals needed.

4


	Heapify
	Sort By Repeatedly Removing the Minimum

