
Problem Set 1

CSCI 136: Fall 2019
Handout PS 1

Due: Friday, Sept. 27 at start of your lecture
section

Instructions: We encourage you to try all of these problems, but please hand in only the ones labeled ”Hand In”. You
will hand in your completed problem set at the beginning of class.
Honor Code for Problem Sets: You can work with other students in the course on these problems, but your written
work should be your own. This means: Once you begin writing up the solutions, you may no longer confer with
anyone else. Also, you may only use the resources provided by your instructors: the text, slides from class, and other
handouts—and, of course, your own notes from class. You should note on your assignment those students with whom
you collaborated.

Some Examples
Here are some sample O() problems with solutions.

1. Show that x2 + 3x− 5 is O(x2).

Solution: Note that x2 + 3x− 5 ≤ x2 + 3x, and if x ≥ 3, then 3x ≤ x2. Thus x2 + 3x− 5 ≤ x2 + x2 = 2x2,
and so letting N = 3 and c = 2, the definition of O() is satisfied: x2 + 3x− 5 ≤ cx2 for all x ≥ N .

2. Show that n3 is not O(n2).

Solution: If n3 were O(n2), then there would be some integer N > 0 and some constant c > 0 such that, for
every n ≥ N , n3 ≤ cn2. But that would mean that n ≤ c for all n ≥ N , which is impossible: For example, let
n = c+N ; then n ≥ N but n 6≤ c.

3. Show that n2 + 1000 is O(n2).

Solution: Here’s another approach: Consider what happens to the ratio (n2 + 1000)/n2 as n gets very large.

lim
n→∞

n2 + 1000

n2
= lim

n→∞
(1 + 1000/n2) = 1.

This means that, given any c > 1 (e.g., c = 1.1), for all large enough values of n, n2+1000
n2 ≤ c. Thus

n2 + 1000 ≤ cn2 for large enough values of n.

This technique is widely applicable. Note that we found a wide range of possible values for c (any c > 1), and
we were able to show that for each c there exists some n0 that works—even though we didn’t find a precise
value for n0!

Big-O
(7 points) . Hand In
Some of the statements below are true while others are not. Determine which are which and ustify your answers using
arguments similar to those above.

a) n2 − 10n+ 100 is O(n2)

b) n2 is O(n2 − 10n+ 100)

c) log2(x) is O(x)

d) x is O(log2(x))

e) sin(x) is O(1) Note: f(x) is O(1) if f(x) ≤ c for some constant c > 0 and all large enough x.

f) n is O(n log2(n)

g) n log2(n) is O(n)

1

(3 points) . Hand In
In class I claimed that the worst-case running time (in terms of number of operations) of the contains method in
the Vector class is O(n). Justify my claim by (possibly over-) counting the number of operations that could ever be
performed on a Vector of size n as a result of calling contains. The method contains is reproduced below for
your convenience. You may assume that the equals method for type E has worst-case running time O(1).

public boolean contains(E elem)
{

int i;
for (i = 0; i < elementCount; i++) {

if (elem.equals(elementData[i])) return true;
}
return false;

}

Mathematical Induction
For each of the following problems, give a clear, complete proof using mathematical induction.
(3 points) . Hand In
Prove that for all n ≥ 1, 12 + 22 + ...+ n2 = n(n+ 1)(2n+ 1)/6.
Consider using summation notation in your proof:

∑n
k=1 k

2 = n(n+1)(2n+1)
6 .

(3 points) . Hand In
Let s1 = 1 and sn = 2sn−1 for all n > 1. Prove that sn = 2n−1 for all n ≥ 1.
(3 points) . Hand In
Prove that the calling the recursive method fib() on any n ≥ 2 results in fewer than 2n recursive calls to itself.
(3 points) . Practice
Prove that for all n ≥ 10, fib(n) ≥ (3/2)n. Hint: Base cases are n = 10, 11.
(3 points) . Practice
Prove that the Towers of Hanoi algorithm for n ≥ 1 disks described in class will find a solution that requires exactly
2n − 1 moves.

2

