
Java Class Types
CSCI 136: Fall 2019

Handout 3
11 September

Class Types

We noted earlier that the String type in Java was not a primitive (or array) type. It is what Java calls a class-
based (or class) type—this is the third category of types in Java. Class types, are based on class declarations. Class
declarations allow us to create objects that can hold more complex collections of data, along with operations for
accessing/modifying that data. For example

public class Student {
private int age;
private String name;
private char grade;

public Student(int theAge, String theName, char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

public int getAge() { return age;}

public String getName() { return name;}

public char getGrade() { return grade;}

public void setAge(int newAge) { age = newAge;}

public void setGrade(char grade) { this.grade = grade;}
}

The above, grotesquely oversimplified, class declaration specifies the data components (instance variables) of a Stu-
dent object, along with a method (called a constructor∗) describing how to create such objects, and several short
methods for accessing/modifying the data components (fields/instance variables) of a Student object. Given such a
class declaration, one can write programs that declare (and create) variables of type Student:

Student a;
Student b;
a = new Student(18, "Patti Smith", ’A’);
b = new Student(20, "Joan Jett", ’B’);

Or, combining the declaration of the variables and creation (instantiation) of the corresponding values (objects):

Student a = new Student(18, "Patti Smith", ’A’);
Student b = new Student(20, "Joan Jett", ’B’);

The words public and private are called access level modifiers; they control the extent to which other classes can
create, access, or modify objects, their fields, and their methods. Declaring the class Student to be public allows
other classes to create objects of type Student. Likewise, declaring the methods getName, setGrade, etc., to
∗ Note: The constructor uses the same name as the class

1

be public allows other classes to invoke these methods on any Student objects they have created. Declaring the
instance variables (name, age, grade) to be private blocks other classes from directly accessing or modifying
those variables. An almost universal rule of thumb in object-oriented design is to allow instance variables to be
accessed/modified only through the use of class methods. This helps guarantee that the underlying state of an object
can’t be compromised by users and that the underlying implementation of a class can be changed if needed without
compromising the functionality of programs that use the class.

The ability to create new data types through class declarations allows for the construction of robust and reusable code
modules and supports the development of larger bodies of code. Class types can be used very much like primitive
types: Variables of any class type can be created, passed to (and returned from) methods, used as types of instance
variables for even more complex classes, and so on. One can create arrays of variables of any class type:

// Create an array to store 3 objects of type Student
Student[] class = new Student[3];

// Create the three Student objects and store them in the array
class[0] = new Student(18, "Patti Smith", ’A’);
class[1] = new Student(20, "Joan Jett", ’B’);
class[2] = new Student(20, "David Bowie", ’A’);

Note the use of new here, both for the creation of the individual student objects and for the creation of the array. Array
and class-based types have more complex storage requirements for their values than do primitive types; in Java, that
storage is allocated by using the keyword new followed by an invocation of the array or class constructor. The two
exceptions to this norm are

• The allocation of an array by explicitly listing its values: int[] scores = {97, 85, 100};,

• The creation of a String using a String literal †: String name = "Zeta";.

Strings are unique in Java among class-based types in that String values can be specified by String literals; the only
other types whose values can be specified by literals are the primitive types.
Strings and arrays in Java have a very similar flavor, but there are some key differences; among them are:

• The ith element of an array x is referenced with syntax x[i]; the ith character in a String x is referenced with
syntax x.substring(i, i+ 1).

• Strings are immutable: one cannot assign a value to an individual position in a String variable; rather a new
String can be constructed by piecing together (concatenating) other Strings.

• To get the size (length) of a String x, use x.length() (i.e., invoke the length method of the String class);
to get the size of an array x, use x.length (i.e., access the length instance variable of the array x).

The Structure of a Java Program
A Java program consists of a set of class declarations; each class declaration typically describes a type of object that
can be created and includes any object data (instance variables) and functionality (class methods). An executing
program consists of a sequence of statements that declare and construct objects and then invoke the methods of the
objects in order to access or modify them in some way. These statements are woven together with other statements
that control the flow of program execution (”if” statements, looping constructs, and so on). Java itself is not a large
language; the set of keywords and symbols in the language is modest. What makes the language powerful and flexible
is the ability to add functionality by designing new class types.
Java is designed to be run in many different environments, from stand-alone code on a computer to embedded systems
on a wide range of devices. The method for executing Java code that we will focus on is the use of a special method,
(always) named main that we can include in a Java class declaration. Here’s a simple Java program:

†A literal is an explicit representation of a value in Java source code, such as 21, 3.14159, ’C’, true, "Hi there!". The only
other literal for class types is null, which can be assigned to any variable of non-primitive type.

2

import Student;

public class StudentDemo {

pubic static void main(String[] args) {
Student a = new Student(18, "Patti Smith", ’A’);
Student b = new Student(20, "Joan Jett", ’B’);

if(a.grade() == b.grade())
System.out.println("Grades match");

else
System.out.println("Grades don’t match");

}
}

The program above consists entirely of a main method. The method itself is pretty dull, it merely compares the grades
of the two student objects and prints an appropriate message. The first line of the main method, called the method
signature, always has the form public static void main(String [] args)‡. We’ll talk more about the
meanings of the keywords public, static, void, but, essentially, they indicate that

public the method can be invoked by users of the Student class

static the method can be invoked (called) without reference to a particular object of type Student; that is, the method
can be called with the syntax: Student.main(x), where x is an array of Strings

void the method does not return a value

Using any text editor, we can create a file that contains the class declaration above, giving the file the name
StudentDemo.java (always use the name of the class as the name of the file). We compile the program (convert
it into Java bytecode) by typing javac StudentDemo.java in a terminal window. We can then execute the
bytecode of the main method of the program by typing java StudentDemo.
The StudentDemo class also includes an import statement. This statement ensures that the Student class is
available for use in the StudentDemo class. Here’s another example of a class that It’s worth noting that we can
define a class that consists only of a main method. For example,

public class MathCalcs {

import java.lang.Math;

pubic static void main(String[] args) {
double x = Math.pow(E,PI); // eˆpi
double y = Math.pow(PI,E)/ // piˆe
if (x > y) System.out.println("eˆpi is greater than piˆe");
else if (y > x) System.out.println("piˆe is greater than eˆpi");
else System.out.println("eˆpi equals piˆe");

}
}

Note that we import the Math class from the java.lang package. A package is a collection of classes that have been
bundled together to provide a family of services. The java.lang package is part of the standard Java distribution.

Enumeration Types
Before exploring the properties and uses of class types, let’s briefly look at a fourth category of types provided by
Java: enumeration types. Enumeration types are used to provide families of named constants. For example, we could
create named constants for the four suits and 13 ranks of a deck of playing cards as follows;

‡Well, the name args can be replaced by any other legal variable name....

3

public enum Suits { CLUBS, DIAMONDS, HEARTS, SPADES }

public enum Ranks {TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING, ACE }

We could then use these names to create a Card class:

public class Card {

private Suit s;
private Rank r;

public Card(Suit s, Rank r) {
this.s = s;
this.r = r;

}

public Suit getSuit() { return s; }
public Rank getRank() { return r; }
public void setSuit(Suit s) { this.s = s; }
public void setRank(Rank r) { this.r = r; }

}

This code could then be used to create a deck of cards:

Card[] deck = new Card[52];

int i = 0;
for (Suit s : Suit.values())

for (Rank r : Rank.values()) {
Card[i] = new Card(s, r);
i++;

The file BasicCard.java contains an implementation of a simple card class like the one above. Note that the keyword
public is missing from the two enum declarations. This is because a single file can only contain one public class
declaration. Which leads us to note that calling enumeration types a ”fourth category” is somewhat misleading. An
enumeration type is just a special kind of class type that allows us to define classes having fixed numbers of possible
values and that can be iterated over using the for-each loop construct in Java. In the following more thorough
versions of our playing card example, we put each enum declaration in its own file, where we can declare them
public. More on this later.

4

