
Lecture 2: Python Expressions

Acknowlegement: This notebook has been adapted adapted from the Wellesley CS111 Spring
2019 course materials (http://cs111.wellesley.edu/spring19).

1 Examples to get started in Python.

The code is provided in the input cells (notice the labels In []:).
To run the code in a cell, select it (by putting the cursor in the cell) and then click the Run button.
(it looks like the Play in a Music Player interface). Alternatively, press Shift+Return in your key-
board.
You’ll see the result in the Out []: cells. You can rerun the code in a cell at any time.
Feel free to change the code to experiment.

1.1 Simple Expressions: Python as a Calculator

The Python interactive interpreter can perform calculations of different expressions just like a
calculator.
Try to guess the result of each input, and then run the code to see the result.
The phrases precedeed by # are comments, they are ignored during the code execution.

In [1]: 3 + 4 * 5 # precedence

Out[1]: 23

In [2]: (3 + 4) * 5 # parenthesis can be used to override precedence

Out[2]: 35

In [3]: 3+4*5 # spaces don't matter

Out[3]: 23

In [4]: 17/3 # floating point (decimal) division

Out[4]: 5.666666666666667

In [5]: 17//3 # integer division

Out[5]: 5

In [6]: 17 % 3 # integer remainder (% in this case is known as the modulo operator)

1

Out[6]: 2

In [7]: 17.0//3 # result of // is a float if either operand is a float.

Out[7]: 5.0

In [8]: 17//2.5

Out[8]: 6.0

In [9]: 17%2.5

Out[9]: 2.0

Summary: The results of an operator can depend on the types of the operand. For example:
7//3 returns 2 and 7.0//3 returns 2.0; neither returns 2.3333, but that is the result of 7/2. Make
sure to understand what is the expected value type for a simple expression.

1.1.1 Strings and Concatenation

A string is a sequence of characters that we write between a pair of double quotes or a pair of
single quotes. Run every cell to see the result.

In [10]: "CS 134" # the string is within double quotes

Out[10]: 'CS 134'

In [11]: 'rocks!' # we can also use single quotes, it is still a string

Out[11]: 'rocks!'

In [12]: "CS 134" + 'rocks!' # example of concatenation

Out[12]: 'CS 134rocks!'

The above was an example of string concatenation, chaining two or more strings in one.
How can you fix the issue of the missing space between 111 and rocks?

Guess what will happen below:

In [13]: "111" + 10

TypeError Traceback (most recent call last)

<ipython-input-13-bf695140c6b7> in <module>
----> 1 "111" + 10

TypeError: must be str, not int

2

This is a TypeError, which happens when an operator is given operand values with types
(e.g. int, float, str) that do not correspond to the expected type.

How can you fix it?

In [17]: '111' + '10' # or '111' + str(10)

Out[17]: '11110'

Repeated Concatenation: Guess the result!

In [18]: '123' * 4

Out[18]: '123123123123'

Summary: The operators + and * are the only ones you can use with values of type string.
Both these operators generate concatenated strings. Be careful when using the * operator. One of
the operands needs to be an integer value. Why? See what happens when you multiply two string
values.

In [19]: 'cs' * '134' # gives an error

TypeError Traceback (most recent call last)

<ipython-input-19-95a7f66083de> in <module>
----> 1 'cs' * '134' # gives an error

TypeError: can't multiply sequence by non-int of type 'str'

1.1.2 Variables

A variable is essentially a box or placeholder containing a value that a programmer names or
changes with an assignment statement, using =.
Variables can name any value.
Important: The symbol = is referred to as “gets” not “equals”!

In [20]: fav = 17 # an assignment statement has no output

In [21]: fav # this is called "variable reference" and denotes the current value of the variable

Out[21]: 17

In [22]: fav + fav # this is a simple expression that uses the current value of the variable

Out[22]: 34

3

In [23]: lucky = 8

In [24]: fav + lucky

Out[24]: 25

In [25]: aSum = fav + lucky # define a new variable and assign to it the value returned by the expression on the right

In [26]: aSum * aSum

Out[26]: 625

Let us change the value stored in the variable named fav.

In [27]: fav = 12

Will this change affect the variable aSum?
How would you check that?

In [28]: # No, assigning to fav does *not* change the values of previous assignments, other than to fav
We can check by evaluating aSum:
aSum

Out[28]: 25

In [29]: fav = fav - lucky # here is yet another change for the value of the variable
Note that the fav on the right is the current value of fav (which is 12),
but we're going to change the value of fav to be 12 - 8, which is 4

What is the current value of fav? How would you check that?

In [30]: fav

Out[30]: 4

1.2 Built-in Functions: print, input, type, int, str, float

print function will display characters on the screen.
Notice how we will not see the output fields labeled with Out[] when we use print.

The input function is used to take input from the user. By default, input value is always of
type string. We can use built-in functions int and float to convert the inputed value to the desired
type.

In [31]: print(7)

7

In [32]: print('Welcome to CS134')

Welcome to CS134

4

Using the built-in str function

In [33]: print('CS' + str(134)) # it prints the result of the expression

CS134

In [34]: college = 'Williams'
print('I go to ' + college) # expressions can combine values and variables

I go to Williams

In [35]: dollars = 10
print('The movie costs $' + str(dollars) + '.') # concatenation of string values

The movie costs $10.

When print is called with multiple arguments, it prints them all, separated by spaces.

In [36]: print(1 + 2, 6 * 7, 'CS' + '111')

3 42 CS111

In [37]: print(1,'+',2,'=',1+2)

1 + 2 = 3

1.3 Building interactive programs with input

In [38]: input('Enter your name: ') # waits for user to provide an input value and then outputs the entry

Enter your name: Harry Potter

Out[38]: 'Harry Potter'

In [39]: age = input('Enter your age: ') # we can store the entered input into a variable

Enter your age: 17

In [40]: age # what value is stored and of what type?

Out[40]: '17'

In [41]: type(age)

Out[41]: str

5

In [42]: age + 4 # will this work?

TypeError Traceback (most recent call last)

<ipython-input-42-8205a21f668a> in <module>
----> 1 age + 4 # will this work?

TypeError: must be str, not int

In [43]: age = int(input('Enter your age: ')) # perform conversion before storing the value

Enter your age: 17

In [44]: age + 4 # will this work now?

Out[44]: 21

Detour: the type function

In [45]: type(134) # this is an integer value

Out[45]: int

In [46]: type(4.0) # this is a decimal value, also known as a floating point number (because the decimal point can "float")

Out[46]: float

In [47]: type("CS134") # this is a string value

Out[47]: str

In [48]: x = "CS134 " + "rocks!"
type(x) # we can also ask for the type of variables, the same way as for values.

Out[48]: str

In [49]: # Hey, what's the type of a type like int, float, str?
type(int)

Out[49]: type

In [50]: # And what's the type of type?
type(type)

Out[50]: type

6

Detour: the int function

In [51]: int('42') # convert a string value to integer

Out[51]: 42

In [52]: int('-273') # it works for negative numbers too

Out[52]: -273

In [53]: 123 + int('42') # will this work?

Out[53]: 165

In [54]: int('3.141') # will this work?

ValueError Traceback (most recent call last)

<ipython-input-54-4ca454ab1c1e> in <module>
----> 1 int('3.141') # will this work?

ValueError: invalid literal for int() with base 10: '3.141'

In [55]: int('five') # will this work?

ValueError Traceback (most recent call last)

<ipython-input-55-c975762f7c5a> in <module>
----> 1 int('five') # will this work?

ValueError: invalid literal for int() with base 10: 'five'

In [56]: int(98.6) # convert from float to integer

Out[56]: 98

In [57]: int(-2.978) # what will this output?

Out[57]: -2

In [58]: int(422) # what will this output?

Out[58]: 422

In [59]: 64 - 4*12*1

Out[59]: 16

7

1.4 Expression values vs. print

In the lines below, notice what happens when you execute the cell. Notice that sometimes you see
an output cell, and sometimes you don’t.

In [60]: 20//2

Out[60]: 10

In [61]: print(20//2)

10

In [62]: 10 + 20

Out[62]: 30

In [63]: print (10 + 20)

30

In [64]: message = "Welcome to CS 134"

Question: why don’t we see anything after executing the above cell?

In [65]: message

Out[65]: 'Welcome to CS 134'

In [66]: print(message)

Welcome to CS 134

Question: Can you notice the difference between the two lines above? Why do you think they
are different?

It turns out that calling print returns the special None value. Python uses a None return value
to indicate the function was called for its effect (the action it performs) rather than its value, so
calling print acts like a statement rather than an expression.

To emphasize that calls to print act like statements rather than expressions, Canopy hides the
None value returned by print, and shows no Out[] line. But there are situations in which the
hidden None value can be exposed, like the following:

In [67]: str(print(print('CS'), print(134))) # Explain why each result line is the way it is!

CS
134
None None

Out[67]: 'None'

8

1.5 [Extra] Misc. Built-in Functions: float, max, min, len

Play with other built-in functions provided by python below.

The function float

In [72]: float('3.141') # convert a string value into a float value

Out[72]: 3.141

In [73]: float('-273.15') # it works for negative values too

Out[73]: -273.15

In [74]: float('3') # can you guess the output, why?

Out[74]: 3.0

In [75]: float('3.1.4') # what is the output for this?

ValueError Traceback (most recent call last)

<ipython-input-75-b95483a60248> in <module>
----> 1 float('3.1.4') # what is the output for this?

ValueError: could not convert string to float: '3.1.4'

In [76]: float('pi') # what is the output for this?

ValueError Traceback (most recent call last)

<ipython-input-76-cff079c88e42> in <module>
----> 1 float('pi') # what is the output for this?

ValueError: could not convert string to float: 'pi'

In [77]: float(42) # convert from an integer to float

Out[77]: 42.0

9

The functions max, min

In [78]: min(7, 3)

Out[78]: 3

In [79]: max(7, 3)

Out[79]: 7

In [80]: min(7, 3, 2, 9) # notice how we can have as many arguments we want.

Out[80]: 2

In [81]: smallest = min(-5, 2) # variable smallest gets the output from the function, in this case, -5.

In [82]: smallest # check the value stored in smallest

Out[82]: -5

In [83]: largest = max(-3, -10) # variable largest gets the value -3, which is the output of
the function call with the arguments -3 and -10

In [84]: largest #check the value stored in largest

Out[84]: -3

In [85]: max(smallest, largest, -1) # we can mix variables and values as function arguments

Out[85]: -1

The function len that returns the number of characters in a string.

In [86]: len('CS134')

Out[86]: 5

In [87]: len('CS134 rocks!') #try to guess before looking it up

Out[87]: 12

In [88]: len('com' + 'puter') # the expression will be evaluated first, and then the result will be an argument for the function

Out[88]: 8

In [89]: course = 'computer programming'
len(course)

Out[89]: 20

In [91]: len(134) # 134 is not a string so this will result in an error

10

TypeError Traceback (most recent call last)

<ipython-input-91-5913de64c0a5> in <module>
----> 1 len(134) # 134 is not a string so this will result in an error

TypeError: object of type 'int' has no len()

11

	CS134: Introduction to the Python Language
	Examples to get started in Python.
	Simple Expressions: Python as a Calculator
	Strings and Concatenation
	Variables

	Built-in Functions: print, input, type, int, str, float
	Building interactive programs with input
	Expression values vs. print
	[Extra] Misc. Built-in Functions: float, max, min, len

