
Lecture 8: Lists and Mutability

Check-in and Reminders
• Reminder: Homework 3 out: pick up from the front

• How to approach homework questions:

• You can test out pieces of code in interactive python

• But the best way to learn is to walk through the logic of the code
using pencil and paper (without a machine)

• Homework are the best practice for exams!

• Lab 3 due tonight for Mon labs, tomorrow night for Tues

• Our office hours

• Today: Iris (12-1 pm), Me (12.30 - 2pm @ CS common room)

• Tomorrow: Iris (10 am-noon), Me (1-2 pm)

Do You Have Any Questions?

Fast Paced Course: Practice is Key!
• This is a very fast paced course

• To keep up, you must practice what we learn in lectures

• Learning a new language is all about immersing yourself in it

• Best way to learn French?

• Go live in France for a bit

• Best way learn Python?

• Live in PythonWorld! Play with examples in interactive python

• Test out code we do in class on your own

• Get ahead, stay ahead. Preparing for the lab by reviewing lectures
will make you more productive!

Do You Have Any Questions?

Review: Lists
• We have worked with lists as a sequence (ordered collection

of items)
• We know how to concatenate two lists with a +
• We know how to append an item to a list
• Lists, unlike strings, are a mutable sequence
• This means we can update them

• Add items to lists
• Delete items from lists
• Sort lists in place, etc

• Today we will discuss lists in more detail and implications of
lists being mutable

Updating by Reassignment
• Update by direct assignment to a list index

Example.

myList[1] = 7 # reassign to an existing index

[1, 2, 3, 4]

myList Before

[1, 7, 3, 4]

myList After

Append()
myList.append(item) : appends item to end of list

  
Example. 

myList.append(5) # stick 5 at the end of the list

[1, 7, 3, 4] [1, 7, 3, 4, 5]

myList Before myList After

Extend()
myList.extend([itemList]): appends all the items in
itemList to the end of myList

Example.  

myList.extend([6, 8]) # stick both 6 and 8 at the
end of the list

[1, 7, 3, 4, 5] [1, 7, 3, 4, 5, 6, 8]

myList Before myList After

Pop()
myList.pop(index): Removes the item at a given index
and returns it. If no index is given, removes and returns the
last item from the list.

Example.

myList.pop(3) 4

[1, 7, 3, 4, 5, 6, 8] [1, 7, 3, 5, 6, 8]

myList Before myList After

returns

Pop()
myList.pop(index): Removes the item at a given index
and returns it. If no index is given, removes and returns the
last item from the list.

Example.

myList.pop() 8

No Index

[1, 7, 3, 5, 6, 8] [1, 7, 3, 5, 6]

returns

myList Before myList After

Insert()
myList.insert(index, item): inserts item at index in
myList, all items to the right of index shift over to make room

Example.

myList.insert(0,11) # insert 11 at index 0

[11, 1, 7, 3, 5, 6][1, 7, 3, 5, 6]

myList Before myList After

Insert()
myList.insert(index, item): inserts item at index in
myList, all items to the right of index shift over to make room

Example.

myList.insert(10,12) # insert 12 at index 10

[11, 1, 7, 3, 5, 6, 12]

inserting at an index out of range

myList Before myList After

[11, 1, 7, 3, 5, 6]

Remove()
myList.remove(item): removes item from myList, all items
to the right removed item shift to the left by one

Example.

myList.remove(12) # remove 12 from myList

[11, 1, 7, 3, 5, 6][11, 1, 7, 3, 5, 6, 12]

myList Before myList After

Sort()
myList.sort(item): sorts the list in place in ascending
order

Example.

myList.sort() # sort by mutating myList

[1, 3, 5, 6, 7, 11][11, 1, 7, 3, 5, 6]

myList Before myList After

Sort() vs Sorted()
• Sort method is only for lists and sorted by mutating the list itself (it

does not return anything!)
• Sorted can be used for any sequence (strings, lists, tuples), it returns

a new sorted sequence, and does NOT modify the original sequence

Example.
list1 = [6, 3, 4], list2 = [6, 3, 4]

list1.sort() # sort by mutating list1

sorted(list2) # returns a new sorted list

[3, 4, 6][6, 3, 4]

list1 Before list1 After list2 Before list1 After

[6, 3, 4] [6, 3, 4]

Does not change!

Value vs Identity
• An objects identify never changes in Python once it has been

created, you may think of it as the object’s address in memory

• The is operator compares the identity of two objects, the id()
function returns an integer representing its identity

• The value of some objects can change. Objects whose values
can change are called mutable; objects whose values cannot
change are called immutable

• The == operator compares the value (contents) of an object

• Question. Which mutable objects have you encountered so far?

Mutability in Python

• Once you create them, their value cannot be changed!
• All functions that we have seen on these return a new object and

do not modify the original object 
 

• Lists are mutable sequences
• As we saw, you can mutate what’s in a list in many ways
• Mutability of lists has many implications such as aliasing, which can

cause more trouble than its worth if we are not careful!

Lists are Mutable

Strings, Ints, Floats are Immutable

>>> num = 5

>>> num = num + 1

Mutability in Python
5

num

5

6num

Strings, Ints, Floats are Immutable

>>> myList = [1, 2, 3]

>>> myList.append(4)

Mutability in Python

[1, 2, 3]

myList

[1, 2, 3, 4]

myList

Lists are Mutable

>>> myList = [1, 2, 3]
>>> newList = [1, 2, 3]
>>> list2 = myList
>>> myList == newList
True
>>> myList is newList
False
>>> myList == list2
True
>>> myList is list2
True

>>> word = 'Williams'

>>> college = word

>>> word == college

True

>>> word is college

True

Mutability in Python

Strings are Immutable Lists are Mutable

Even though word and college
have the same identity now, if we

tried to update one of them it
would just assume a new identity!

List Aliasing
• Any assignment or operation that “points” to a list implicitly creates an alias

>>> myList = [1, 2, 3]

>>> list2 = myList # creates an alias!

>>> newList = [1, 2, 3]
>>> list2 is myList True

>>> myList is newList False

[1, 2, 3]

myList list2

returns

newList

[1, 2, 3]

returns

Int, floats, Str are NOT mutable
• Int, str and float are immutable, once created they can never

be changed. Any operation on them creates a new object.

name = 'gryffindor'

 'gryffindor'

name

Int, floats, Str are NOT mutable
• Int, str and float are immutable, once created they can never

be changed. Any operation on them creates a new object.

name = 'gryffindor'

name = name[4:8] # returns a new string, gets assigned to name

 'gryffindor'

name

'find'

Seq Operations: Return a new Seq
• The following operations that can be performed on both lists

and strings always return a new list/string

• sorted(sequence): returns a new sorted sequence

• slicing operator: returns a new sliced sequence

• assignment of a new sequence to a variable

 word = 'Shikha'

 myList = [1, 2, 3]

• concatenation always creates a new sequence

• operations like len, accessing an element using an
index do not modify the sequence

Mutability Quiz: Test Yourself
• Can you explain this?

• Can you explain this?

Mutability Quiz: Test Yourself

Tuples: New Immutable Sequence
Examples:

Tuples: New Immutable Sequence
• Tuples are an immutable sequence of values separated by

commas and enclosed within parenthesis ()

• Tuples support any sequence operation that don’t involve
mutation: e.g., len(), indexing, slicing, concatenation, sorted

• Tuples support simple and nifty assignment

harryInfo = ['Harry Potter', 11, True]

name, age, glasses = harryInfo #tuple assignment!

is just concise way of writing:

name = harryInfo[0]

age = harryInfo[1]

glasses = harryInfo[2])

Format Printing in Python
• A quick way to build strings with particular form is to use

the .format function on them
Syntax: myString.format(*args)
*args means it takes zero or more arguments
• For every pair of braces ({}), format consumes one argument.
• Argument is converted to a string (with str) and concatenated with

the remaining parts of the format string
• Especially useful in printing: called format printing

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

