Lecture 7: Strings

Check-in and Reminders

* Reminder: Homework 2 due now: place in folders up front

* |Lab 3 released on Friday

* Lab 2 you were given an algorithm and you had to implement it

 Lab 3 you have to come up the algorithm (to solve word puzzles!)
 Advice: sketch out your algorithm outline on paper first
* Code later! (Jumping to code often leads to errors)

* |Interms of problem infrastructure:
* Dealing with multiple python files for the same time

* Jopics to refresh: for loops, nested loops, file reading, strings

0 git Do You Have Any Questions? Xy

Review from Last Lecture

What is the different purpose of modules and scripts?

What is the purpose of special variable __name__ 7

When do statements placed within the guarded 1f

_name__ == '_main__': block get executed?

When do statements placed within the guarded 1f

_hame__ == '_main__': block do not get executed?

What sorts of things should we place within 1f _ _name__

== ' main_ '?

What is the purpose of the __all__ special variable in a
module?

Today’s Class: Topics Outline

How to slice and dice sequences to create new sequences
Play with built-in string functions

e strip, split, join

* |ower, upper

* replace
sorted sequences

e sorted function

* .sortonlists

Format printing!

Review: How Do Indices Work?

 [ndices Iin Python are both positive and negative.

0 1 2 3 4 5 6 7
"W1ll1ams'
8 7 6 -5 -4 3 2 -

word = "Willlams'

Review: upper(), lower()

* You can convert a string to uppercase or lowercase using Python's
inbuilt upper() and lLower() methods

* They return a new string with the corresponding case

In [1]: originalWord = 'Williams'
In [2]: newUpperWord = originalWord.upper ()
newLowerWord = originalWord.lower()

In [3]: newUpperWord

Out[3]: 'WILLIAMS'
In [4]: newLowerWord
Out[4]: 'williams'

In [5]: originalWord # original word does not change

Out[5]: 'Williams'

Slicing Operation [:]

In [1l]: word = 'Willaims'

In [2]: word[l:4]

Out[2]: 'ill'

In [3]: word|[:3]

Out[3]: 'wil'

In [4]: word[2:]

Out[4]: 'llaims'

In [5]: word[4:100] # notice no indexError

Out[5]: 'aims'

Slicing Operation with Optional Step

In [1]: word = 'Williams'

In [2]: word[:6:2] # optional step argument

Out[2]: 'wli'

In [3]: word[::2]

Out[3]: 'Wlim'

In [4]: word[::-1] # reverse

Out[4]: 'smailliWw'

In [5]: word[2::-2]

Out[5]: '"1wW'

String to Lists

We can create a list from a string in several different ways.

e Using the L1st function on a string returns a list of all its
characters

« .spli1t() function on a string creates a list of words (which
were separated by spaces in the string)

In [1]: word = 'Williams'

In [2]: list(word)

Out[Z]: [lwl, lil’ lll’ lll, lil' lal' lml' lsl]

In [3]: phrase = "New England's weather is unpredictable.”
phrase.split()

Out[3]: ['New', "England's", 'weather', 'is', 'unpredictable.']

Lists of Strings to Strings

* |fyou have a list of strings, you can "join" them together in a
string using Python's jo1n method

« Joinis a string method so it operates on a string, €.g. a

string containing a space ' ' or a string containing ',
e |t returns a new string, e.g.

In [7]: ' '.Jjoin(['Birds’', 'of', 'a', 'feather'])
Out[7]: 'Birds of a feather'

In [8]: ', '.join(['Birds', 'of', 'a', 'feather'])

Out[8]: 'Birds,of,a,feather’

Mutability

Strings are Immutable

« Once you create a string, it cannot be changed!

* All functions that we have seen on strings return a new string
and do not modify the original string

Lists are mutable

o Lists are mutable sequences

 As we saw, you can append to a list

 You can modity a list in many other ways: we will see this in
the next lecture

Summary: Sequences Operations

Operation R

X in seq

True if an item of seq1s equal to x

x not in seq

False if an item of seq is equal to x

seql + seq2

The concatenation of seql and seq2*

seq*n, n*seq

n copies of seq concatenated

seq[i]

1’th item of seq, where origin is 0

seq[i:]]

slice of seq from i to j

seq[i:j:k]

slice of seq from 1 to | with step k

len(seq) length of seq
min(seq) smallest item of seq
max (seq) largest item of seq

* Concatenation Is not supported on range objects

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Summary: String Methods

Returned value

word = '"Williams College’

word.split() ['"Williams', 'College’]
word.upper() '"WILLIAMS COLLEGE’
word. lower() 'williams college’
word.replace('iams', 'eslley') "Willeslley College’
word.replace('tent’, 'eselley') '"Williams College’
newNord = ' Spacey College '

newWord.strip() 'Spacey (College’
myList = ["Williams', 'College']

'.jJjoin(myL1ist) "Williams College’

Remember. none of these operations change/affect the original
string, they all return a new string

Lots More String Functions

e word.find(s)

* Return the first (or last) position of string s in word. Returns -1 if
not found.

¢ s.1sspace()
(or 1slower, 1isupper, isalpha, isdigit, isalnum).

 Returns True if sisnotempty and s is composed of white

space (or lowercase, uppercase, or alphabetic letters, or digits,
or either letters or digits).

e word.count(s)

e Returns the number of (non-overlapping) occurences of S Iin
word

« Many more: see pydoc3 str

Sorted Function

* The built-in function sorted which takes a sequence as input, creates

and returns a new list where items of are ordered in ascending order.

In [1]: numbers = [35, -2, 17, -9, 0, 12, 19]
sorted (numbers)

out[1]: [-9, -2, 0, 12, 17, 19, 35]

* Notice that the original list is unchanged

In [2]: numbers

out[2]: [35, -2, 17, -9, 0, 12, 19]

Sorted Function on Strings

e Strings can be sorted the same way: the ordering used for the sorting
is dictated by the ASCII values of the characters.

In [3]: phrase = 'Red Code 1'
sorted(phrase)

Out[3]: [l l’ ! I’ Ill’ |C|, IR|, Idl, Idl, le|, leI’ IOI]

* Notice that spaces and special characters are first, following by
numbers, followed by capital letters, and finally lower case

* You can check the ASCII value of any character using the ord function

In [4]: oxrd(' ')

Out[4]: 32 < ASCII value of space

Why Sort Strings?

* (Gives us a canonical form, useful to find other strings made up of the
same characters!

* Remember that when comparing strings, we should always make sure
they are in the same case (which is why we use .lower() often)

- Motivating example. Anagrams.

* Finding anagrams of a given word among a list of words

* What do anagrams have in common?

Dormitory = Dirty room
School master = The classroom
Listen = Silent

Funeral = Real fun

Format Printing in Python

A quick way to build strings with particular form is to use
the . format function on them

Syntax: myString.format(*args)
*args means it takes zero or more arguments
« For every pair of braces ({}), format consumes one argument.

* Argument is converted to a string (with str) and concatenated with
the remaining parts of the format string

e Especially useful in printing: called format printing

In [8]: "Hello, you {} world{}".format("silly",'!') # creates a new string

Out[8]: 'Hello, you silly world!'

In [9]: print("Hello, {}.".format("you silly world!"))

Hello, you silly world!.

Resume Exercise: bookStats

Last lecture we were reading in the book Pride and Prejudice
We converted it to a list of words using

 strip function and split function

* list accumulation
We also built some functions in our module sequencelools

Lets apply some of these to figure out interesting things about pride
and prejudice

We can throw in some string functions we learnt today as well!
* For example, how many palindromes are in the book?

 What would happen if we took out conjunctions from the book?

Acknowledgments

These slides have been adapted from:

o hittp://cs111.wellesley.edu/spring19 and

o https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

