
Lists and File Reading
(Nested Loops)

Check-in and Reminders
• Reminder: pick up graded Homework 1 from up front
• Today in CS colloquium:

• Thesis student talks
• 2.35 pm in TCL 123 (Wege)

• Resources tab on course page:

Do You Have Any Questions?

Last Class
• We learnt about sequences such as strings and lists

• How their indexing works

• For loops!

• Used when we have a known sequence that we want to
iterate over

• While loops!

• Used when we don’t know stopping condition ahead of
time

• Built a bunch of functions on sequences along the way

• Do you remember any of them?

Review: Syntax of Loops

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Review: Loops as Flow Charts

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Today’s Class
• Learning goals:

• How to build, test, and use a module

• How to test functions using doctests

• if `__name__ == “__main__” block

• Nested loops

• How to read from a file

• How to accumulate in a list

• Concatenating lists

• Appending to list

Modules and Scripts
• Script is generally any piece of code saved in a file, e.g., phase.py

• Scripts are meant to be directly executed with: python3 phase.py

• A module are generally collection of statements and definitions (a sort of
a library) that is meant to be imported and used by a different program

• Within a module, the module’s name is available in a variable called
__name__

• When a module is executed to be run directed as a script (as opposed
to being imported), the __name__ variable is set to main

• Why does this matter? Importing a module runs it, and we often want
different behavior when the code is run as script vs when its imported
as a module

Importing a Module

__all__ special variable

• If the variable starts/ends with “_ _” it’s a special python variable

• We saw this with __name__

• __all__ is another special variable

• Whatever is stored in __all__ is imported when the user types:

from moduleName import *

• Any specific function/variable/etc. in the module can also be explicitly
imported as:

from moduleName import explicitVariableName

 if __name__ == '__main__'
• We can place code that we want to run when our module is executed as

a script inside the if `__name__ == “__main__”: block

• This is usually testing code and we do not want run when we are
importing functions from the file

• For example, all the definition functions we have design on sequences
and loops are now in the file sequenceTools.py

• Notice the code at the bottom of the file under if `__name__ ==
“__main__”: block

• This code block will be run when we execute python3
sequenceTools.py

• This code block will not be run when we import functions from this
module

• Python's doctest module allows you to embed test cases and
expected output directly into a functions docstring

• To use the doctest module we must import it using import doctest

• To make sure the test cases are run when the program is run as a script
from the terminal, we need to call doctest.testmod().

• To make sure that the tests are not run in an interactive shell or when the
functions from the module are imported, we should place the command
within a guarded if `__name__ == "__main__": block, e.g.

if __name__ == "__main__":

 import doctest

 doctest.testmod()

Testing Functions: Doctests

List Accumulations
• It is often the case that we use loops to iterate over a sequence to

"accumulate" certain items from it.

• Suppose someone gave us a list of words and we want to collect all
words in that list that start with a vowel.

• First we need to be able to iterate over all words in the master list

• Then, for each word we must check if it starts with a vowel

• If the word starts with a vowel, we want to store it somewhere

• Since we want to store a collection of words, we can use a list type

• Such processes where we are accumulating something in a list are
called *list accumulation*. You can accumulate items in a list using
concatenation, similar to strings.

List Accumulation Example
• Define a function vowelList that iterates over a given list of words
wordList and collects all the words in the list that begin with a vowel
(in a new list) and returns that list.

A Nest Loop for Printing

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Reading Files: Open
• open(filename, mode) returns a file object

• filename is a path to a file

• mode is a string where

• 'r' - open for reading (default)

• We will only look at this mode today

• Technically when you open a file, you must also close it

• To avoid writing code to explicitly open and close, we will use the
with… as block which keeps the file open within it

• Today’s focus: file objects are iterable

• We will see how to iterate over the lines of a file

Reading Files: with .. as
with open(filename) as inputFile:

do something with file

Image Source: (http://cs111.wellesley.edu/spring19)

Note. (syntax) Indentation defines the body of the
with block where the file is open

Path to file on computer as a string
Variable name for your file object

http://cs111.wellesley.edu/spring19

Iterating over Lines in a File
• Within a with open(filename) as inputFile: block, we can

iterate over the lines in the file just as we would iterate over any
sequence such as lists or strings

• A line in the file is determined by the special newline character '\n’

• For us visually, a line has the regular meaning

• I have a text file called classNames.txt within a directory
textfiles, so I would iterate and print each line in it as follows:

Path to file on computer as a string

Variable name for your file object

String Functions Helpful in File Reading
• When iterating over the lines of a file, the line variable will be a string

ending in a special newline character '\n’

• Using the string function line.strip(): removes leading and
trailing whitespace

• To break up a string of words (such as a line in a file) into a list of the
constituent words, we can use line.split(): .split will split a string
into a list based on a character (default is a space)

• Try these functions out in interactive python!

line variable stores a string terminated by '\n’

Class Coding Exercises
• Now that we know how to write nested loops, accumulate in lists and

read from files, let us do some fun exercises with these concepts.

• We already built some helper functions in last class and today that play
with sequences, we can use them to analyze files such as the book
Pride and Prejudice

• We can ask questions such as:

• How many words in Pride and Prejudice begin with a Vowel

• How many words in Pride and Prejudice start and end with the same
letter?

• How many names are common between students in this class and
Pride and Prejudice!

• Anything else fun?

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

