Lists and File Reading
(Nested Loops)

Check-in and Reminders

 Reminder: pick up graded Homework 1 from up front
 TJoday in CS colloguium:
« [hesis student talks

e 2.35pmin TCL 123 (Wege)

 Resources tab on course page:

Typical workflows

Viewing Lab Grades in Gitl.ab

Duane's Incredibly Brief Intro to Unix and Emacs

Python.org Python Tutorial

Python Standard Library

Python Language Reference

VPN Instructions for Accessing Gitl.ab from off-campus

Do You Have Any Questions?

Last Class

We learnt about sequences such as strings and lists

 How their indexing works
For loops!

 Used when we have a known sequence that we want to
iterate over

While loops!

e Used when we don't know stopping condition ahead of
time

Built a bunch of functions on sequences along the way

Do you remember any of them?

Review: Syntax of Loops

a boolean expression
denoting whether to iterate

/ through the body of the

loop one more time.

while continuation condition :
statementl

statementN A sequence of items: characters

in a string, items in a list, ranges,
A variable that takes its values etc.
from the items of the sequence.

N\

for var in sequence:
statementl

statementN

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Review: Loops as Flow Charts

till elements False

in sequence

. >> for
) loop
'
body '
statﬁrentN Y, <

X i
i True continuation False |
i _condition :
1 4 \
| statementl i
i % while |
: i loop |
| body 5
! statementN < y E
| |
v

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Today’s Class

 |earning goals:

 How to build, test, and use a module
 How to test functions using doctests
e 1f __name__ == “__main__" block
 Nested loops
 How to read from a file
« How to accumulate in a list

o (Concatenating lists

 Appending to list

Modules and Scripts

Script is generally any piece of code saved in a file, e.g., phase.py
Scripts are meant to be directly executed with: python3 phase.py

A module are generally collection of statements and definitions (a sort of
a library) that is meant to be imported and used by a different program

Within a module, the module’s name is available in a variable called
__hame__

When a module is executed to be run directed as a script (as opposed
to being imported), the __name__ variable is set to main

Why does this matter”? Importing a module runs it, and we often want
different behavior when the code is run as script vs when its imported
as a module

Importing a Module

all__ special variable

e |f the variable starts/ends with “_ _" it's a special python variable
 We saw this with __nhame__

« __all__ isanother special variable

 Whatever is stored in __all__ is imported when the user types:

from moduleName import *

* Any specific function/variable/etc. in the module can also be explicitly
imported as:

from moduleName 1import explicitVariableName

1f name == " main '

We can place code that we want to run when our module is executed as
a scriptinside the 1f ~__name__ == “__main__": block

This is usually testing code and we do not want run when we are
importing functions from the file

For example, all the definition functions we have design on sequences
and loops are now in the file sequenceTools.py

Notice the code at the bottom of the file under 1f __name__ ==
“ __main__": block

* This code block will be run when we execute python3
sequenceTools.py

e This code block will not be run when we import functions from this
module

Testing Functions: Doctests

Python's doctest module allows you to embed test cases and
expected output directly into a functions docstring

To use the doctest module we must import it using i1mport doctest

To make sure the test cases are run when the program is run as a script
from the terminal, we need to call doctest.testmod().

To make sure that the tests are not run in an interactive shell or when the
functions from the module are imported, we should place the command
within a guarded 1f __name__ == "__main__": block, e.g.

1f __name__ == "__main__":

import doctest

doctest.testmod()

List Accumulations

* |t is often the case that we use loops to iterate over a sequence to
‘accumulate” certain items from it.

* Suppose someone gave us a list of words and we want to collect all
words In that list that start with a vowel.

* First we need to be able to iterate over all words in the master list

* Then, for each word we must check if it starts with a vowel

 |f the word starts with a vowel, we want to store it somewhere

e Since we want to store a collection of words, we can use a list type

* Such processes where we are accumulating something in a list are
called *list accumulation®. You can accumulate items in a list using
concatenation, similar to strings.

List Accumulation Example

* Define a function vowelL1st that iterates over a given list of words

wordL1ist and collects all the words in the list that begin with a vowel
(in a new list) and returns that list.

def vowelWordList(wordList):
'"'"Returns a list of words that start with a vowel from the input list'"''
result = [] # initialize list accumulation variable
for word in wordList:
if startsWithVowel (word):
result.append(word)
return result

In [22]: phrase = ['The', 'sun', 'rises', 'in', 'the',k\

'east', 'and', 'sets', 'in', 'the', 'west']

In [23]: vowelWordsAccumulator (phrase)

Out[23]: ['in', 'east', 'and', 'in']

A Nest Loop for Printing

A for loop body can contain a £or loop.

Outer loop

rint

WWWNNNN R

XX X X X X X'T
B WA WN

for [i|in range (2, 6):
for |j| in range (2, 6): Inner loop
print(i, 'x', jJ, '=', i*j)

the multiplication table from 2 to 5

4 To notice:

6 o Variable i in the outer loop is set initially to value 2.

8 « Variable j in the inner loop is set initially to value 2.

10 e Variable j keeps changing its value: 3, 4, 5;

6 meanwhile 1 doesn’t change.

0 o When the inner loop is done, 1 becomes 3.

12 « Now the inner loop starts again, and j takes on the values
2,3,4.5

o Every time j reaches 5, the inner loop ends and 1 increments.
o The outer loop ends when both 1 and j are 5.

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Reading Files: Open

open(filename, mode) returns a file object
 filename is a path to a file
* mode is a string where
e 'r' - open for reading (default)
* We will only look at this mode today
Technically when you open a file, you must also close it

To avoid writing code to explicitly open and close, we will use the
with.. as block which keeps the file open within it

Today’s focus: file objects are iterable

 \We will see how to iterate over the lines of a file

Reading Files: with .. as

with open(filename) as inputFile:

do s mething with file

Variable name for your file object

Path to file on computer as a string

Note. (syntax) Indentation defines the body of the
with block where the file 1s open

f = open (filename, 'r')
... file operations involving £ ...
f.close()

@

with open (filename, 'r') as £:
... file operations involving £ ...
£ implicitly closed
when with is done.

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

lterating over Lines in a File

* Withina with open(filename) as inputFile: block, we can

iterate over the lines in the file just as we would iterate over any
seqguence such as lists or strings

* Aline in the file is determined by the special newline character '\n’

* For us visually, a line has the regular meaning

* | have a text file called classNames. txt within a directory
textfiles, so | would iterate and print each line in it as follows:

with open('textfiles/classNames.txt') as roster: # roster: name of file object
for line in roster:

print(line)
file is implicitly closed here
Variable name for your file object

Path to file on computer as a string

String Functions Helpful in File Reading

* When iterating over the lines of a file, the line variable will be a string
ending in a special newline character '\n’

* Using the string function Line.strip(): removes leading and
trailing whitespace

* To break up a string of words (such as a line in a file) into a list of the
constituent words, we can use line.split(): .split will split a string

into a list based on a character (default is a space)

* Try these functions out in interactive python!

with open('textfiles/classNames.txt') as roster: # roster: name of file object
for line in roster:
prinv/line)
file is implie_ “'v closed here

line variable stores a string terminated by '\n’

Class Coding Exercises

* Now that we know how to write nested loops, accumulate in lists and
read from files, let us do some fun exercises with these concepits.

* We already built some helper functions in last class and today that play
with sequences, we can use them to analyze files such as the book

Pride and Prejudice

* We can ask questions such as:

How many words in Pride and Prejudice begin with a Vowel

How many words in Pride and Prejudice start and end with the same
letter?

How many names are common between students in this class and
Pride and Prejudice!

Anything else fun?

Acknowledgments

These slides have been adapted from:

o hittp://cs111.wellesley.edu/spring19 and

o https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

