
Sequences and Loops

Check-in and Reminders
• Reminder: pick up Homework 2 from up front, due Monday
• Lab 2 due Wed 11 pm (Mon labs), Thurs 11 pm (Tues labs)
• Can always work on lab machines after 4 pm

• Keep your work consistent with what is on evolene

• Always push to evolene when done with a work session

• If restarting work on a different machine:
• If working on that lab on that machine for the 1st

time: clone the repository just like you would in lab
• Otherwise, make sure to Fetch -> Pull in Atom first!

Do You Have Any Questions?

Leftovers: Simplifying Boolean Expressions

• There are several code patterns involving booleans and
conditionals that can be simplified as good coding style

if BE:

return True

else:

 return False

return BE

if BE1:

return BE2

else:

 return False

return BE1 and BE2

Many more examples!

BE: Boolean expression, e.g.  
num % 2 == 0, char in word

Motivation: Iteration
• Given a word like 'Boston', or 'Williams', how many vowels

does it have?

def countAllVowels(word):

 '''Returns number of vowels in the word'''

 # body ?

• Helper function we can use?

Old Friend: isVowel
• Simple predicate to check if a letter is a vowel
def isVowel1(char)

```determines whether a character is a vowel```

c = char.lower()

return (c == 'a' or c == 'e' or c == 'i' or c == 'e' or c == 
'o' or c == 'u')  

def isVowel2(char)

```determines whether a character is a vowel```

assume c is not an empty string

c = char.lower()

return c in 'aeiou'

Can we chain and say c == 'a' or 'e'
or 'i' or 'e' or 'u'?

Simplified check using in!

Built in method to convert char to lower case

Indexing: Accessing Characters
• Can access elements of a sequence (such as a string or list)

using its indices

• Indices start at 0 and go on to length(word) -1

• We read word[0] as word sub 0.

In [1]: word = 'Boston'

In [2]: word[0]

Out [2]: 'B'

In [3]: word[1]

Out [3]: 'o'

We need to check characters at all indices starting
from 0, then 1, 2, …., up to len(word)-1

How Do Indices Work?
• Can access elements of a sequence (such as a string or list)

using its indices
• Indices in Python are both positive and negative. Everything

outside these values will cause an IndexError.

Iterating with for Loops
• One of the most common ways to manipulate a sequence is to

perform some action for each element in the sequence
• This is called looping or iterating over the elements of a

sequence

Generic form of a for loop
for var in seq:
 # body of loop
 # statements involving var

Note. (for loop syntax) Indentation defines the
loop body and colon : after name of sequence

Counting Vowels
• Coming back to our motivating example  

def countAllVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

for char in word:

 if isVowel(char):

 count += 1

 return count

• Loop variable. char above is the loop variable that takes on the
values of each character in word

Initializing our counter before loop starts

Counting Vowels: Tracing the Loop
• How the local variables are updates as the loop runs  

def countAllVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

for char in word:

 if isVowel(char):

 count += 1

 return count

char

count

10 2

'o''B' ’s' ’t' 'o' ’n'

countAllVowels('Boston')

word

'Boston'

Loop variable

Exercise: Count Characters
• Define a function countChar that takes two arguments, a

character and a word, and returns the number of times that
character appears in the word.  

def countChar(char, word):

 '''Counts # of times a character appears in a word'''

 count = 0 # initialize count

for letter in word:

 if char.lower() = letter.lower():

 count += 1 # update count

 return count

New Sequence: Lists
• A list is a comma separated sequence of values

In [1]: phrase = ['A', 'lovely', 'spring', 'day']

In [2]: type(phrase)

Out [2]: <class 'list'>

In [3]: numseq = [3, 4, 5, 6]

In [4]: alsoAList = ['1', '3', '4', 'CS']

In [5]: list('Shikha')

Out [5]: ['S', 'h', 'i', 'k', 'h', 'a']

• We will study lists in more detail in coming lectures

• Example of 'mutable' objects in Pythons.

• In contrast, strings are immutable

Looping over Lists
• We can loop over lists the same way we loop over strings.
• The loop variable iteratively takes on the values of each item in the list,

starting with the 1st item, then 2nd, and finally the last item of the list.
• The following loop iterates over the list, printing each item in it  
 

phrase = ["A", "lovely", "Fall", "day"]

for word in phrase:

 print(word)

Exercise: WordStartEnd
• Let's count the number of words in the given list that start and end with the

same letter. See Jupyter Notebeook for testing this function. 

def wordStartEnd(wordList):
 '''Takes a list of words and counts the # of words it
 that start and end with the same letter'''

 count = 0 #initilize counter
 for word in wordList:
 if len(word): #why do we need this?
 if word[0].lower() == word[-1].lower():
 # print(word) debugging print here perhaps
 count += 1
 return count

Range Function
• When the range function is given two integer arguments, it returns

a range object of all integers starting at the first and up to, but not
including, the second

• To see the list included in the range, we can pass it to the list
function which returns a list of numbers

• A list is a new Python type: stores a sequence of any values,
delimited by square brackets, and separated by commas

In [1]: range(0, 10)
In [2]: range(0, 10)
Out [2]: list(range(0,3))
In [3]: list(range(3)) #missing first arg defaults to 0
Out [3]: [0,1,2]

Loops to Repeat Tasks
• Sometimes we might use a loop, not to iterate over a sequence

but just to repeat a task over and over. The following loops print a
pattern to the screen.  

for i in range(5): # for loops to print patterns
 print('$' * i)
for j in range(5):
 print('*' * j)

for _ in range(10):
print('Hello World!')

$
$$
$$$
$$$$
*
**

Try this out in interactive python! When loop variable is
not needed in body, can use _ as variable

What If We Don’t Know When to Stop?
• Stopping condition of for loop: no more elements in sequence

• What if we don’t know when to stop?

["A", "lovely", "Fall", "day"]

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

While Loops
• for loops iterate over a pre-determined sequence and stop at the end

of the sequence.

• while loops are useful when we don't know in advance when to stop

• A while loop will keep iterating until the condition in the parenthesis
is satisfied and will halt if the condition fails to hold

• A generic example of a while loop looks like this:

 
while (continuation condition is true):  
 # keep repeating the following  
 # statements in loop body

Note. (while loop syntax) Indentation defines the loop
body and colon : after continuation condition

While Loops
• for loops iterate over a pre-determined sequence and stop at the end

of the sequence.
• while loops are useful when we don't know in advance when to stop
• A while loop will keep iterating until the condition in the parenthesis

is satisfied and will halt if the condition fails to hold
• A generic example of a while loop looks like this:
 
while (some condition is true):  
 # keep repeating the following  
 # statements in loop body

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

While Loop Example
• Example of a while loop that depends on user input  

prompt = 'Please enter your name (type quit to exit): '
name = input(prompt)

while (name.lower() != 'quit'):
 print('Hi,', name)
 name = input(prompt)
print('Goodbye')  

• See notebook for example tests of this piece of code.

While Loop to Print Halves
• Given a number, keep dividing it until it becomes smaller than 0 and

print all the “halves”

100
50
25
12
6
3
1

def printHalves(n):
 while n > 0:
 print(n)
 n = n//2

printHalves(100)

def printHalves(n):
 while n > 0:
 print(n)
 n = n//2

printHalves(100)

Infinite loop! Indentation matters!

Modules and Scripts
• Script is generally any piece of code saved in a file, e.g., phase.py

• Scripts are meant to be directly executed with: python3 phase.py

• A module are generally collection of statements and definitions (a sort of
a library) that is meant to be imported and used by a different program

• Within a module, the module’s name is available in a variable called
__name__

• When a module is executed to be run directed as a script (as opposed
to being imported), the __name__ variable is set to main

• Why does this matter? Importing a module runs it, and we often want
different behavior when the code is run as script vs when its imported
as a module

 if __name__ == '__main__'
• We can place code that we want to run when our module is executed as

a script inside the if `__name__ == “__main__”: block

• This is usually testing code and we do not want run when we are
importing functions from the file

• For example, all the definition functions we have design on sequences
and loops are now in the file sequenceTools.py

• Notice the code at the bottom of the file under if `__name__ ==
“__main__”: block

• This code block will be run when we execute python3
sequenceTools.py

• This code block will not be run when we import functions from this
module

• Python's doctest module allows you to embed test cases and
expected output directly into a functions docstring

• To use the doctest module we must import it using import doctest

• To make sure the test cases are run when the program is run as a script
from the terminal, we need to call doctest.testmod().

• To make sure that the tests are not run in an interactive shell or when the
functions from the module are imported, we should place the command
within a guarded if `__name__ == "__main__": block, e.g.

if __name__ == "__main__":

 import doctest

 doctest.testmod()

Testing Functions: Doctests

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

