Sequences and Loops

Check-in and Reminders

 Reminder: pick up Homework 2 from up front, due Monday
 Lab 2 due Wed 11 pm (Mon labs), Thurs 11 pm (Tues labs)

« (Can always work on lab machines after 4 pm
« Keep your work consistent with what is on evolene
* Always push to evolene when done with a work session

e |f restarting work on a different machine:

e |t working on that lab on that machine for the 1st
time: clone the repository just like you would in lab

e (Otherwise, make sure to Fetch -> Pull in Atom first!

0 git Do You Have Any Questions? Xy

Leftovers: Simplifying Boolean Expressions

There are several code patterns involving booleans and

conditionals that can be simplified as good coding style

1f BE:
return True
else:

return False

1f BE1:
return BEZ
else:

return False

Many more examples!

-> return BE

BE: Boolean expression, e.Q.

num % 2 ==

=3 |return BE1 and BEZ

)

char i1n word

Motivation: lteration

« @Given a word like 'Boston’, or 'Willlams', how many vowels
does it have”

def countAllVowels(word):
"' "Returns number of vowels 1n the word'''

body ?

* Helper function we can use?

Old Friend: 1sVowel

 Simple predicate to check it a letter is a vowel
def 1sVowell(char)

" “determines whether a character is a vowel ~°

c = |char.lower() Built in method to convert char to lower case
return (c == 'a' or c == 'e' or c == '"1' or c == 'e' or c ==
Y O) Or. ——) u Y)
Canwe chainandsayc == 'a' or 'e'
or '"t'" or 'e' or 'u'?

def 1sVowelZ(char)
" “determines whether a character i1s a vowel
assume c 1s not an empty string
c = char.lower()

. . Simplified check using in!
return ¢ in 'aeiou'

Indexing: Accessing Characters

 (Can access elements of a sequence (such as a string or list)
using its indices

* |ndices start at @ and go on to Length(word) -1
« We read word[@] as word sub O.

In [1]: word = 'Boston’

In [2]: word[0@]

Out [2]: 'B' We need to check characters at all indices starting
from 0, then1l, 2, ..., uptolen(word)-1

In [3]: word[1]
Out [3]: 'o'

How Do Indices Work?

 (Can access elements of a sequence (such as a string or list)
using its indices

* |ndices in Python are both positive and negative. Everything
outside these values will cause an IndexError.

word = 'Boston'’
0 1 2 3 4 S
‘B’ ‘O, ‘S, ct> ‘O, ‘ﬂ,

lterating with for Loops

* One of the most common ways to manipulate a sequence is to
perform some action for each element in the sequence

* This is called looping or iterating over the elements of a
sequence

Generic form of a for loop
for var 1in seq:
body of loop

statements involving var

Note. (for loop syntax) Indentation defines the
loop body and colon ¢ after name of sequence

Counting Vowels

 Coming back to our motivating example

def countAllVowels(word):

'""Returns number of vowels 1in the word'''

count = 0 Initializing our counter before loop starts

for char in word:
1f 1sVowel(char):
count += 1

return count

e Loop variable. char above is the loop variable that takes on the
values of each character in word

Counting Vowels: Tracing the Loop

 How the local variables are updates as the loop runs

def countAllVowels(word):

'""Returns number of vowels 1in the word'''

count = 0

for char in word:

1f 1sVowel(char):

count += 1

return count

Loop variable

countAllVowels('Boston')

'Boston'

word

Yo
|

Exercise: Count Characters

* Define a function countChar that takes two arguments, a

character and a word, and returns the number of times that
character appears in the word.

def countChar(char, word):
'""Counts # of times a character appears in a word'''
count = @ # 1initialize count
for letter 1n word:
1f char.lower() = letter.lower():
count += 1 # update count

return count

New Sequence: Lists

 Alistis a comma separated sequence of values

In [1]: phrase = ['A', 'lovely', 'spring', 'day']

In [2]: type(phrase)

Out [2]: <class 'list'>
In [3]: numseq = [3, 4, 5, 6]

In [4]: alsoAlList = ['1", '3", '4', 'CS']

In [5]: 1ist('Shikha'")

Out [5]: ['S', 'h', '.i_', '|<', 'h', 'a']

- We will study lists in more detail in coming lectures
 Example of 'mutable’ objects in Pythons.

* |n contrast, strings are immutable

Looping over Lists

* We can loop over lists the same way we loop over strings.

* The loop variable iteratively takes on the values of each item in the list,
starting with the 1st item, then 2nd, and finally the last item of the list.

* The following loop iterates over the list, printing each item in it

phr'ase — [llA", lllove'l-y", llFa'I-'I-", llday"]
for word 1n phrase:

print(word)

Exercise: WordStartEnd

* Let's count the number of words in the given list that start and end with the
same letter. See Jupyter Notebeook for testing this function.

def wordStartEnd(wordList):
""'"Takes a list of words and counts the # of words 1t
that start and end with the same letter'''
count = @ #initilize counter

for word in wordList:
1f len(word): #why do we need this?
1f word[@].lower() == word[-1].lower():

print(word) debugging print here perhaps
count += 1

return count

Range Function

* When the range function is given two integer arguments, it returns
a range object of all integers starting at the first and up to, but not
including, the second

* TJo see the list included in the range, we can pass it to the list
function which returns a list of numbers

* Alistis a new Python type: stores a sequence of any values,
delimited by square brackets, and separated by commas

In [1]: range(@, 10)

In [2]: range(@, 10)
Out [2]: list(range(0,3))
In [3]: list(range(3)) #missing first arg defaults to 0

Out [3]: [0,1,2]

Loops to Repeat Tasks

e Sometimes we might use a loop, not to iterate over a sequence
but just to repeat a task over and over. The following loops print a
pattern to the screen.

for 1 1n range(5): # for loops to print patterns
print('$" * 1)

for J in range(5): i$
print('*" * 3) $$$
for _ in range(10): i$$$
print('Hello World!") -
% % %
Try this out in interactive python! When loop variable is s ¢ Sk 5k

not needed in body, can use _ as variable

What If We Don’t Know When to Stop?

« Stopping condition of for loop: no more elements in sequence

["A", lllove'l-yll, "Fa'l-'l-", llday"]

t+t t 1

 What if we don’t know when to stop?

Please enter your name: Ted

Hi, Ted .

Please enter your name: Marshall In this example, we
Hi, Marshall don’t know how
Please enter your name: Lily Inanytmeﬂsvdﬂlx3
Hi, Lily responding. We need
Please enter your name: quit tolﬁxq)aﬁdng.

Goodbye

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

While Loops

« for loops iterate over a pre-determined sequence and stop at the end
of the sequence.

« while loops are useful when we don't know in advance when to stop

« Awhile loop will keep iterating until the condition in the parenthesis
s satisfied and will halt if the condition fails to hold

* A generic example of a while loop looks like this:

while (continuation condition 1is true):
keep repeating the following
statements 1n loop body

Note. (while loop syntax) Indentation defines the loop
body and colon ¢ after continuation condition

While Loops

while loops are a fundamental mechanism

for expressing iteration a boolean expression
denoting whether to iterate
keyword indicating through the body of the
while loop \ loop one more time.

while continuation condition :

body of loop = [statementl
actions to — e
perform if the statementN @ *
continuation — : True False
condition is true i [°°22:3‘;i§;gn |
statementl
% loop
i body
statementN < y
L |

Image Source: (http://cs111.wellesley.edu/spring19) v

http://cs111.wellesley.edu/spring19

While Loop Example

 Example of a while loop that depends on user input

T

prompt = 'Please enter your name (type quit to exit):

name = 1nput(prompt)

while (name.lower() != 'quit'):
print('Hi,"', name)
name = 1hput(prompt)
print(’'Goodbye")

* See notebook for example tests of this piece of code.

While Loop to Print Halves

* Given a number, keep dividing it until it becomes smaller than O and

print all the "halves”

def printHalves(n):
while n > 0:
print(n)
n=n//2

printHalves(100) —>

100
50
25
12

def printHalves(n):

while n > Q:

print(n)
n =n//2
printHalves(100)

Infinite loop! Indentation matters!

Modules and Scripts

Script is generally any piece of code saved in a file, e.g., phase.py
Scripts are meant to be directly executed with: python3 phase.py

A module are generally collection of statements and definitions (a sort of
a library) that is meant to be imported and used by a different program

Within a module, the module’s name is available in a variable called
__hame__

When a module is executed to be run directed as a script (as opposed
to being imported), the __name__ variable is set to main

Why does this matter”? Importing a module runs it, and we often want
different behavior when the code is run as script vs when its imported
as a module

1f name == " main '

We can place code that we want to run when our module is executed as
a scriptinside the 1f ~__name__ == “__main__": block

This is usually testing code and we do not want run when we are
importing functions from the file

For example, all the definition functions we have design on sequences
and loops are now in the file sequenceTools.py

Notice the code at the bottom of the file under 1f __name__ ==
“ __main__": block

* This code block will be run when we execute python3
sequenceTools.py

e This code block will not be run when we import functions from this
module

Testing Functions: Doctests

Python's doctest module allows you to embed test cases and
expected output directly into a functions docstring

To use the doctest module we must import it using i1mport doctest

To make sure the test cases are run when the program is run as a script
from the terminal, we need to call doctest.testmod().

To make sure that the tests are not run in an interactive shell or when the
functions from the module are imported, we should place the command
within a guarded 1f __name__ == "__main__": block, e.g.

1f __name__ == "__main__":

import doctest

doctest.testmod()

Acknowledgments

These slides have been adapted from:

o hittp://cs111.wellesley.edu/spring19 and

o https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

