Sorting: Merge Sort

Sorting Algorithms

 |ast lecture, we implemented and analyzed Selection Sort
* Selection sort is natural and intuitive:
 Finds the min element, puts it in the first spot

 Finds the second-min element, puts in 2nd spot, etc.

. Selection sort takes O(n?) steps to sort a list of size n

e (Can come up with many other natural sorting algorithms that
compare and rearrange a slightly different way

. A lot of these algorithms are O(n?): intuitively any algorithm
that takes k steps to move each item k positions to its sorted
ocation will take at least O(n?) steps as every element can
be O(n) away from its sorted position in the worst case.

e Question. Can we beat this? And if so, how?

Towards O(n log n) Sorting

« Let d(e) denote the distance of e in the list from its location
In the list in sorted order

e [0 do better than much better than nz, we need to be able

to move an item e to its final position in significantly less
steps then d(e)

* Essentially, saying that this item is not in the left half,
out rather right half efficiently

 We will achieve this by a divide-conquer (recursive) sorting
algorithm called Merge Sort

* Invented by John von Neumann in 1945

 FEvery elegant idea, that ends up being optimal!

Merge Sort: Idea

e |f we split the list in half, sorting the left and right halt are
smaller versions of the same problem

* Recursive thinking: if the recursion fairy sorted the left and
right halves of the list, how long does it take to combine
them into a single sorted list?

12 219 4 11

W
H
N
H
N
U
H
)

m

n//2 :

Merge Sort: Idea

e |f we split the list in half, sorting the left and right halt are
smaller versions of the same problem

* Recursive thinking: if the recursion fairy sorted the left and
right halves of the list, how long does it take to combine
them into a single sorted list?

2 4 9 11 12

H
W
U1
\I
H
W)
H
N

m

n//2 A

Merging Sorted Lists

- Problem. Given two sorted lists a and b, how quickly can
we merge them into a single sorted list?

a b
2 4 9 11 12 1 3 5] 7 13 14
1]

merged list C

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 12 1 3 5] 7 13 14
1]

merged list C

n = len(Ca) + len(b)

~ —P

Merging Sorted Lists

Is a[i] <= b[j] ?

e Yes, al[1] appended to c
e No, b[j] appended to c

d

Vi

4 1 9 11 12

1x

1

1

3

5

/113 14

TK

]

merged list C

A~ —>

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 12 1 3 5] 7 13 14
1]

merged list c| 1 | Z

n = len(Ca) + len(b)

~ —p

Merging Sorted Lists

Is a[i] <= b[j] ?

e Yes, al[1] appended to c
e No, b[j] appended to c

d
2 | 4 9 11 12 1 3 5 7 13 14
i)
2 3

merged list C

A~ —

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 1/ 1 3151 7 13 14
i]

merged list c| 1 l 3 4

n = len(Ca) + len(b)

A~ —

Merging Sorted Lists

Is a[i] <= b[j] ?

e Yes, al[1] appended to c
e No, b[j] appended to c

merged list C

d
2 | 4 9 11 12 1 3 5 7 13 14
i)
3 4

~ —P

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 1/ 1 3151 7 13 14
i]

merged list c| 1 l 3 4 5 14

n = len(Ca) + len(b)

~ —p

Merging Sorted Lists

Is a[i] <= b[j] ?

e Yes, al[1] appended to c
e No, b[j] appended to c

merged list C

d
2 | 4 9 11 12 1 3 5 7 13 14
i]
2 3 4 9

~ —p

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[i] <= b[j] ?

e Yes, al[1] appended to c

e No, b[j] appended to c

merged list C

d
2 | 4 9 11 12 1 3 5 7 13 14
i]
2 3 4 9 | 11

~ —p

n = len(Ca) + len(b)

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 1/ 1 3151 7 13 14
i]

merged list c| 1 | 2 3 14 5 7 | 9 11 12

n = len(Ca) + len(b)

A~ —>

Merging Sorted Lists

Is a[1] <= b[]] 7
e Yes, al[1] appended to c
e No, b[j] appended to c

a b
2 4 9 11 12 1 3 5] 7 13 14
1]

merged list c| 1 l 3 4 5 14 9 11 12 13 14

T n = len(Ca) + len(b)
Kk

Merging Sorted Lists

e Algorithm:

« Walk through lists a, b, ¢ maintaining current position of
indices i,], k

« Compare ali] and b[j], whichever is smaller gets put in
the spot of c[k]

« Simple loop thatrunsn = len(a) + len(b) times

 Takeaway:

« Merging two sorted lists into one is an O(n) step
algorithm!

 We can use this merge procedure to design our recursive
merge sort algorithm

Merge Sort

e Base case:

e |f listis empty or contains a single element: its already
sorted! We can return it as is.

 Recursivecase:n = len(L) and m = n//2

* Recursively sort left and right halves: L[:m] and
L[m:] (take the recursively leap of faith)

* Merge the sorted lists into a single list and return it
* Things you may be thinking:

 What?

 Where is the sorting happening?

* |s this magic?

Merge Sort

e Base case:

e |f listis empty or contains a single element: its already
sorted! We can return it as is.

 Recursivecase:n = len(L) and m = n//2

* Recursively sort left and right halves: L[:m] and
L[m:] (take the recursively leap of faith)

* Merge the sorted lists into a single list and return it
* Things you may be thinking:

 What?

 Where is the sorting happening?

* |s this magic?

Let's Play Out the
Recursion to Understand

12 4 11 1 7114 5 13
/ \
12 4 |11 1 714 5 13

12 2 9 | 4 11 14 13
/ \

12 2 9 | 4 11 14 13

12 2 119 | 4 11 14 13

14 5 13

I

14 5 13

1

I

1

L N\

11

11

14 5 13

/ N

14| 5 13

I

1

/ N

I

1

3

11

9 114 11

12

L

2

12

VANAN

12

14 5 13

13

I

14 5 13

14 5 13

/ N

/ \

14| 5 13

1

I

I

1

L N\

1

I

1

VAN

11

/ N

3

11

11

11

/N

9 114 11

12

L

2

12

12

VANAN

12

12

11

11

51113

14

5 | 13

11

N/
12| | 2 11
W N\
2 |12 11

4 11
AW
12| | 2 4 11
)" N/
2 12 O 11
\/
2 4 11 12

13

\WA

5

5 13 14

I

7 113114

/| 114/ 5 13

1

N/

1

I

5

AW AW4

3

3

1

11

11

AW

4

4

9

A4

11 12

\/

2

9

12

4

12

14

11 12 13 | 14

9

I

Merge Sort Takeaways

* All the sorting happens after the recursive calls hit their
base case and 'merge’ on the way back

 Merging is cheap: cost is proportional to the size of the
merged list

 How deep can the recursion be”

* At each step, the size of the lists go down by halt
e Levell.n

e Level2:n/2

. Level i: n/2!
. When does size become 1: n/2' =1, level i = log, n

o Thus, at most [log, n| + 1 levels until we're done

Merge Sort Analysis

O(n) steps per level, we have O(log n) levels, thus overall O(n log n) algorithm

4| |11 1|7 51113

—wf W4 N/

1212119 (|4 113 ||1 | 7| {14 |5 13

N
O(log n) 2 12| |4 9 |11 1 3 7 5 13| 14

2 |4 19 11 12 1 3 |5 7 13 14

1 123 /4 5 7 9 11 12 13 14

Let's Implement Merge Sort!

See Jupyter Notebook

Overview of Algorithms

 We have seen algorithms that are
« O(logn): binary search
e (O(n): searching in an unsorted list
« O(nlogn): merge sort
. O(n?): selection sort

 What about exponential time algorithms®?
. 02"

e |f we are not careful we can end up designing such an
algorithm unintentionally

« Example: recursive Fibonaccl

Exponential Recursive Fibonacci:
Stupid Recursion

Fibonacci Sequence

The fibonacci numbers F, form a sequence, called the

—ibonacci sequence, such that each number is the sum of
the two preceding ones, starting from O and 1. That is,

Fo=0,F =1,andF, =F, ,+ F, ,foralln > 2.

Named after mathematician Pisa (later called Fibonacci),
although it appears in early Indian mathematical texts

Recursive Fibonacci is slow because It computes
| REcF1BO(n):
the same values over and over again ifn=0

return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + RecFiBo(n—2)

Recursive Fibonaccl

e« Fy=0,F =1,andF,=F, ,+F, foralln > 2.

« Number of recursive calls made are exponential in n

A

2

= n A

%DD. HUU
R[FJ F) (F) (7 (o)

Fibonacci Loop

« Remembering the (n — 1)th and (n — 2)th number is
sufficient to compute the nth Fibonacci number

VWrapping Up: Final VWords

What We Have Learnt

* How to use Python as a computational tool
e Built toolboxes to manipulate strings, files
* \Visualize data
* Abstraction
 (Choosing the right abstraction: functions, classes, etc.
* Hiding the details from the user
* Automation
 No need to write repetitive code
* |terative and recursive strategies
* Problem solving strategies/ Computational thinking

* Data Structures, recursive thinking

Where To Go from Here

« CS 136: Data Structure and Advanced Programming
* Discrete Mathematics (Math 200)

Course Description

This course combines work on program design, analysis, and verification with an introduction to the study of data structures.
Data structures capture common ways in which to store and manipulate data, and they are important in the construction of
sophisticated computer programs. We will use the Java programming language in class and for the assignments.

You will be expected to write several programs, ranging from the short and simple to the more complex and challenging as the
semester progressess. Since one of our goals in this course 1s to help you learn how to write large, reliable programs
composed from reusable pieces, we will be emphasizing the development of clear, modular programs that are easy to read,
debug, verify, analyze, and modify.

DIY Problem Solving

About Project Euler

What is Project Euler?

Project Euler is a series of challenging mathematical/computer programming problems that will require more than
just mathematical insights to solve. Although mathematics will help you arrive at elegant and efficient methods,
the use of a computer and programming skills will be required to solve most problems.

The motivation for starting Project Euler, and its continuation, is to provide a platform for the inquiring mind to
delve into unfamiliar areas and learn new concepts in a fun and recreational context.

Who are the problems aimed at?

The intended audience include students for whom the basic curriculum is not feeding their hunger to learn, adults
whose background was not primarily mathematics but had an interest in things mathematical, and professionals
who want to keep their problem solving and mathematics on the cutting edge.

Can anyone solve the problems?

The problems range in difficulty and for many the experience is inductive chain learning. That is, by solving one problem it will expose you to a
new concept that allows you to undertake a previously inaccessible problem. So the determined participant will slowly but surely work his/her way
through every problem.

"Project Euler exists to encourage, challenge, and develop the skills and enjoyment of anyone with an interest in the
fascinating world of mathematics.”

Source: https://projecteuler.net/

https://projecteuler.net/

Acknowledgments

These slides have been adapted from:

o http://cs111.wellesley.edu/spring19 and

o https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/

» Selection sort images from: https://web.stanford.edu/class/
archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

