
Sorting:  Merge Sort



• Last lecture, we implemented and analyzed Selection Sort
• Selection sort is natural and intuitive: 

• Finds the min element, puts it in the first spot 
• Finds the second-min element, puts in 2nd spot, etc. 

• Selection sort takes  steps to sort a list of size  

• Can come up with many other natural sorting algorithms that 
compare and rearrange a slightly different way 

• A lot of these algorithms are : intuitively any algorithm 
that takes  steps to move each item  positions to its sorted 
location will take at least  steps as every element can 
be  away from its sorted position in the worst case. 

• Question.  Can we beat this? And if so, how?
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• Let  denote the distance of  in the list from its location 
in the list in sorted order 

• To do better than much better than , we need to be able 
to move an item  to its final position in significantly less 
steps then  

• Essentially, saying that this item is not in the left half, 
but rather right half efficiently 

• We will achieve this by a divide-conquer (recursive) sorting 
algorithm called Merge Sort

• Invented by John von Neumann in 1945 

• Every elegant idea, that ends up being optimal!
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Merge Sort:  Idea

Lm = n//2

0 n = len(L)

12 2 9 4 11 3 1 7 14 5 13

• If we split the list in half, sorting the left and right half are 
smaller versions of the same problem 

• Recursive thinking:  if the recursion fairy sorted the left and 
right halves of the list, how long does it take to combine 
them into a single sorted list?



0

• If we split the list in half, sorting the left and right half are 
smaller versions of the same problem 

• Recursive thinking:  if the recursion fairy sorted the left and 
right halves of the list, how long does it take to combine 
them into a single sorted list?

Merge Sort:  Idea

L

n = len(L)

122 94 11 31 7 145 13

m = n//2



• Problem.  Given two sorted lists a and b, how quickly can 
we merge them into a single sorted list?
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Merging Sorted Lists

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
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• Algorithm: 

• Walk through lists  maintaining current position of 
indices  

• Compare  and , whichever is smaller gets put in 
the spot of  

• Simple loop that runs len(a) + len(b) times 

• Takeaway: 

• Merging two sorted lists into one is an  step 
algorithm! 

• We can use this merge procedure to design our recursive 
merge sort algorithm

a, b, c
i, j, k

a[i] b[ j]
c[k]

n =

O(n)

Merging Sorted Lists



• Base case: 

• If list is empty or contains a single element: its already 
sorted! We can return it as is. 

• Recursive case: n = len(L) and m = n//2

• Recursively sort left and right halves: L[:m] and 
L[m:] (take the recursively leap of faith) 

• Merge the sorted lists into a single list and return it 

• Things you may be thinking: 

• What? 

• Where is the sorting happening? 

• Is this magic?
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Let's Play Out the 
Recursion to Understand
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• All the sorting happens after the recursive calls hit their 
base case and "merge" on the way back  

• Merging is cheap: cost is proportional to the size of the 
merged list 

• How deep can the recursion be? 
• At each step, the size of the lists go down by half 
• Level 1:  
• Level 2:  
• .... 
• Level :  

• When does size become 1:   , level  
• Thus, at most  levels until we're done

n
n/2

i n/2i

n/2i = 1 i = log2 n
⌈log2 n⌉ + 1

Merge Sort Takeaways



Merge Sort Analysis

O(log n)

 steps per level, we have  levels, thus overall  algorithmO(n) O(log n) O(n log n)
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Let's Implement Merge Sort!
See Jupyter Notebook



• We have seen algorithms that are 

• :  binary search 

• :  searching in an unsorted list 

• :  merge sort 

• :  selection sort 

• What about exponential time algorithms? 

•   

• If we are not careful we can end up designing such an 
algorithm unintentionally 

• Example: recursive Fibonacci

O(log n)
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Overview of Algorithms



Exponential Recursive Fibonacci:   
Stupid Recursion



Fibonacci Sequence
• The fibonacci numbers  form a sequence, called the 

Fibonacci sequence, such that each number is the sum of 
the two preceding ones, starting from 0 and 1. That is, 

•  

• Named after mathematician Pisa (later called Fibonacci), 
although it appears in early Indian mathematical texts 

• Recursive Fibonacci is slow because it computes  
the same values over and over again

Fn

F0 = 0, F1 = 1, and Fn = Fn−2 + Fn−1 for all n ≥ 2.



Recursive Fibonacci
•  

• Number of recursive calls made are exponential in 

F0 = 0, F1 = 1, and Fn = Fn−2 + Fn−1 for all n ≥ 2.

n



Fibonacci Loop
• Remembering the ( )th and ( )th number is 

sufficient to compute the th Fibonacci number
n − 1 n − 2

n



Wrapping Up:  Final Words



• How to use Python as a computational tool 

• Built toolboxes to manipulate strings, files 

• Visualize data 

• Abstraction 

• Choosing the right abstraction: functions, classes, etc. 

• Hiding the details from the user 

• Automation 

• No need to write repetitive code  

• Iterative and recursive strategies  

• Problem solving strategies/ Computational thinking 

• Data Structures, recursive thinking

What We Have Learnt



• CS 136:  Data Structure and Advanced Programming 

• Discrete Mathematics (Math 200)

Where To Go from Here



DIY Problem Solving

Source: https://projecteuler.net/

https://projecteuler.net/


These slides have been adapted from: 
• http://cs111.wellesley.edu/spring19 and  

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/  

• Selection sort images from: https://web.stanford.edu/class/
archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

