
Abstracting with
Functions

Reminders and Announcements
• Make sure you pick up Homework 1 today
• Due Monday (Feb 17 in class)
• Monday labs: push your work (every week) by Wed 11 pm
• Tuesday labs: push your work (every week) by Thurs 1 pm  

• Late day policy for labs. Each student has three late days,
with at most two late day towards any particular lab.

• Late day: no-questions-asked 24-hour extension
• You must request a late day in advance on the Late day form

located on the course webpage, under Course Policies

Check-in After First Lab!
• You have all had your first computer science lab

• Congratulations !
• Computer science tools you used:

• Atom as a text editor
• Terminal as a text-based interface to the computer
• Git for versioning, Github/Gitlab (cloud-based hosting

service) for retrieving & submitting your work
• Python, of course

Do	You	Have	Any	Questions?

Review and Reflect
• What is the difference between executing a python program

as a script versus using interactive python on the terminal  

• What’s the difference between Jupyter notebooks we use in
class versus an interactive python session? 

• How can you test out and play with examples we do in a
Jupyter notebook by yourself? 

• What is the difference between Out[] when we run a
command in Jupyter vs using the print command?

Structuring Code
• So far

• We have written simple expressions
• We can create small scripts to do certain tasks

• This is fine for small computations
• Need more organization for larger problems

• Structuring code is good to
• Keep track of which part of code is going what
• What information needs to supplied where
• Reusability! reusing blocks of code we write

Abstracting with Functions
• Abstraction to achieve code decomposition and reuse
• Real life example: a projector

• We know how to switch it on and off (public interface)
• How to connect it to our computer (input/output)
• Don’t know how it works internally (information hiding)

• Key idea: We don’t need to know much about a projector to
be able to use it

Decomposition Using Functions
• To write organized code, divide it tasks into functions

• That are self-contained
• Each function is a small piece of a larger task
• Functions are reusable
• Keep code organized
• Keeps code coherent

• Today, we will learn how to decompose code and hide
details using functions

• Later in the semester, we will learn a new abstraction which
achieves decomposition and code hiding: classes

Anatomy of a Function
• Function definition characteristics:

• Has a name #header
• Has parameters (or more) #header
• Has a docstring (optional but recommended) #header
• Has a body (which may compute a value or produce a

side-effect like printing)
• Always returns something (even without an explicit

return statement)

• Functions are not run in a program until they are “called” or
“invoked” through a function call

Function Example
Function definition

def square(x):

   ```Takes a number and returns its square```

   return x*x  

    

Function Calls/Invocations

In [1] square(5)

Out [1] 25 

In [2] square(-2)

Out [2] 4

Important:
• Indent in function body (required) 
• Colon after function name 

(required) 
• Docstring (optional, good style) 
• x in function definition is a 

parameter 
• Single line body which returns the 

result of the expression x * x
• return always ends execution of 

function! 



Parameters
• A parameter names are “holes” in the body of a function 

that will be filled in with argument value for each invocation 
• A particular name for a parameter is irrelevant, as long as we 

use it consistently in the body

def square(x): 

return x*x 

def square(num): 

return num*num

def square(apple): 

return apple*apple



Python Function Call Model
Function frame.  Model to understanding how a function call works

square (2+3) square (5) 

5

square frame

x

return x * x 

5

square frame

x

return 5 * 5 

5

square frame

x

return 25

25

Return value replaces the function call!



Function Call Replaced by Return Value

17 + square (2+3) 

17 + square (5) 

17 + 25 

42 



Return Vs Print
Return

• return only has meaning inside 
a function definition 

• A function definition may have 
multiple returns, but only the first 
one encountered is executed 

• Any code after a return is 
reached will not be executed 

• Has a value associated with it 
and can be used in expressions 

• Function without an explicit 
return, return a None    

Print
• print can be used inside or 

outside functions  
• Has a side-effect (prints to 

console) 
• Cannot be used in expressions 

expecting a value 
• Is technically a function and 

always returns a None type  
• (None is a special python type!)



Fruitful Vs None Functions
We call functions that return a None value None-returning or 
None functions.  Such functions are invoked to perform an 
action (e.g., print something, change state), and not to 
compute and return a result.

We call functions that return a value other than None fruitful 
functions or value-returning functions.

def square(x): 

return x*x 

Fruitful

def printHW(): 

print(`Hello World’)

None Function

What if I run print(printHW) or print(print((printHW))?



Exercise:  Day of the Week
• Compute the day of the week for an arbitrary date, specified 

using a month, day, and year (1900—2099) 
• Need a monthly adjustment, according to this table 
• If it’s a leap year and month is Jan or Feb, we must subtract 

one from the adjustment 
• For now, we will just use our predefined function 

monthAdjust that does this part for us



• Given a month between 1 and 12, a day of the month 
between 1 and 31 and a year in the range 1900-2099 

• Step 1.  Compute the monthly adjustment madj 

• Step 2. Compute the number of years year since 1900  

• Step 3. Compute the sum of: madj, day, year and the 
the whole number of times 4 divides year

• Step 4. Compute the remainder of the sum computed above 
when divided by 7, this gives the day of the week as a num 
0-6, where 0 is Saturday, 1 is Sunday etc. 

• Step 5. Convert the day of the week number to its description 

Exercise:  Day of the Week



Test Your Steps
• Admiral Grace Hopper was born on December 9, 1906

• Monthly adjustment madj?  6

• Year year since 1990? 6

• Day of the week day? 9

• Quotient when year is divided by 4? 1

• sum = 6 + 6 + 9 + 1 = 22

• 22 % 7 = 1 ~ Sunday!



Testing Functions Interactively
• Defined in a script, test interactively via terminal:  

• Suppose function definition is in a script dow.py
• Can test functions in it interactively using interactive python 

• First compile dow.py and then go to interactive python 
and type from dow import dayName (for example) 

• Call dayName(1) to see return value and test!

• Function testing and testing on Jupyter notebook 
• Seamlessly combines definitions and testing in one place  
• But everything we do on Jupyter can be done in interactive 

python via the terminal!



Variable Scope
• Local variables.  An assignment to a variable within a 

function definition creates/changes a local variable 
• Local variables exist only within a functions body, and cannot 

be referred outside of it 
• Parameters are also local variables that are assigned a 

value when the function is invoked

def square(num): 

return num*num

In [1] square (5) 
Out [1] 25 
In [2] num
NameError: name ‘num’ is not defined



Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val  

val = 3
newVal = myfunc(val) 

Global scope

myfunc
Some 
code

val 3

newVal



Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val  

val = 3
newVal = myfunc(val) 

Global scope

3

myfunc frame

val

val = val + 1

print(`val =`, val)

return val 

myfunc
Some 
code

val 3

newVal eww



Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val  

val = 3
newVal = myfunc(val) 

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some 
code

val 3

newVal eww



Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val  

val = 3
newVal = myfunc(val) 

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some 
code

val 3

newVal 4

Information flow out of a function is only through return statements !

Function frame destroyed 
(and all local variables lost) 

after return from call



Acknowledgments

• These slides have been adapted from: 

• http://cs111.wellesley.edu/spring19 and  

• https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-0001-
introduction-to-computer-science-and-
programming-in-python-fall-2016/ 

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

