Abstracting with
Functions

Reminders and Announcements

Make sure you pick up Homework 1 today

Due Monday (Feb 17 in class)
Monday labs: push your work (every week) by Wed 11 pm

Tuesday labs: push your work (every week) by Thurs 1 pm

Late day policy for labs. Each student has three late days,
with at most two late day towards any particular lab.

Late day: no-questions-asked 24-hour extension

You must request a late day in advance on the Late day form
located on the course webpage, under Course Policies

Check-in After First Lab!

* You have all had your first computer science lab

Congratulations !
 (Computer science tools you used:
 Atom as a text editor
 Terminal as a text-based interface
» @it for versioning, Github/Gitlab (c

to the computer

oud-based hosting

service) for retrieving & submitting your work

 Python, of course

Do You Have Any Questions?

ogit () &

Review and Reflect

What is the difference between executing a python program
as a script versus using interactive python on the terminal

What's the difference between Jupyter notebooks we use in
class versus an interactive python session”

How can you test out and play with examples we do in a
Jupyter notebook by yourself?

What is the difference between Out[] when we run a

command in Jupyter vs using the print command?

Structuring Code

e SO far

e We have written simple ex

Nressions

 We can create small scrip

'S to do certain tasks

* This is fine for small computations

 Need more organization for larger problems

e Structuring code is good to

 Keep track of which part of code is going what

 \What information needs to

supplied where

* Reusability! reusing blocks of code we write

Abstracting with Functions

Abstraction to achieve code decomposition and reuse
Real life example: a projector
 We know how to switch it on and off (public interface)
 How to connect it to our computer (input/output)

 Don't know how it works internally (information hiding)

Key idea: We don't need to know much about a projector to
be able to use it

Decomposition Using Functions

« Jo write organized code, divide it tasks into functions
* That are self-contained
» Each function is a small piece of a larger task
* [unctions are reusable
 Keep code organized

 Keeps code coherent

 TJoday, we will learn how to decompose code and hide
details using functions

e Later in the semester, we will learn a new abstraction which
achieves decomposition and code hiding: classes

Anatomy of a Function

Function definition characteristics:

Has a name #header
Has parameters (or more) #header
Has a docstring (optional but recommended) #header

Has a body (which may compute a value or produce a
side-eftect like printing)

Always returns something (even without an explicit
return statement)

Functions are not run in a program until they are “called” or
‘Invoked” through a function call

Function Example

Function definition
def square(x):

N N N\

return x*x

Function Calls/Invocations
In [1] square(5)

Out [1] 25

In [2] square(-2)

Out [2] 4

Takes a number and returns 1its square

Important:

Indent in function body (required)

Colon after function name
(required)

Docstring (optional, good style)

X In function definition is a
parameter

Single line body which returns the
result of the expression X * X

return always ends execution of
function!

Parameters

A parameter names are “holes” in the body of a function
that will be filled in with argument value for each invocation

e A particular name for a parameter is irrelevant, as long as we
use it consistently in the body

def square(x): def square(apple):

return x*x return apple*apple

def square(num):

return num*num

Python Function Call Model

Function frame. Model to understanding how a function call works

Return value replaces the function call!

square| (2+3) | =P square| (5) | ====pp | 25

E—

square frame square frame square frame

X 5 X > X 5

> >

return| x * x return| 5 * 5 return| 25

Function Call Replaced by Return Value

17 + square |(2+3)

4

17 + square |(5)

4

17 + 25

4

42

Return Vs Print

Return

return only has meaning inside
a function definition

A function definition may have
multiple returns, but only the first
one encountered Is executed

Any code after a return is
reached will not be executed

Has a value associated with it
and can be used in expressions

Function without an explicit
return, return a None

Print

* print can be used inside or

outside functions

Has a side-effect (prints to
console)

Cannot be used in expressions
expecting a value

Is technically a function and
always returns a None type

(None is a special python type!)

Fruitful Vs None Functions

We call functions that return a None value None-returning or

None functions. Such functions are invoked to perform an
action (e.g., print something, change state), and not to
compute and return a result.

We call functions that return a value other than None fruitful
functions or value-returning functions.

Fruitful None Function
def square(x): def printHW():
return x*x print(Hello World’)

What if | run print(printHW) or print(print((printHW))?

Exercise: Day of the Week

Compute the day of the week for an arbitrary date, specified
using a month, day, and year (1900—2099)

Need a monthly adjustment, according to this table

It it's a leap year and month is Jan or Feb, we must subtract
one from the adjustment

For now, we will just use our predefined function

monthAdjust that does this part for us

Month 123 45 6 7 8 9 10 11 12

Adjusment 1 4 4 0 2 5 0 3 6 1 4 ©6

Exercise: Day of the Week

Given a month between 1 and 12, a day of the month

between 1 and 31 and a year in the range 1900-2099
Step 1. Compute the monthly adjustment madj

Step 2. Compute the number of years year since 1900

Step 3. Compute the sum of: madj, day, year and the

the whole number of times 4 divides year

Step 4. Compute the remainder of the sum computed above

when divided by 7, this gives the day of the week as a num
0-6, where 0 is Saturday, 1 is Sunday etc.

Step 5. Convert the day of the week number to its description

Test Your Steps

Admiral Grace Hopper was born on December 9, 1906

Monthly adjustment madj? 6

Year year since 19907 6

Day of the week day? 9

Quotient when year is divided by 47 1
sum = 6 + 6 + 9 + 1 = 22

22 % 7 = 1 ~ Sunday!

Month 1 2 3 4 5 6 7 8 9 10 11 12

Adjusment 1 4 4 0 2 5 0 3 6 1 4 6

Testing Functions Interactively

 Defined in a script, test interactively via terminal:
* Suppose function definition is in a script dow. py
 (Can test functions in it interactively using interactive python

* First compile dow. py and then go to interactive python

and type from dow import dayName (for example)

* Call dayName(1) to see return value and test!

* Function testing and testing on Jupyter notebook

e Seamlessly combines definitions and testing in one place

But everything we do on Jupyter can be done in interactive
python via the terminal!

Variable Scope

Local variables. An assignment to a variable within a
function definition creates/changes a local variable

_ocal variables exist only within a functions body, and cannot
oe referred outside of it

Parameters are also local variables that are assigned a
value when the function is invoked

def square(num):

return num*num

In [1] square (5)

Out [1] 25

In [2] num

NameError: name ‘num’ 1s not defined

Variable Scope

def myfunc (val):
val = val + 1
print('val = ', val)

return val

Global scope

val = 3 Some
myfunc

newVal = myfunc(val) 4 code
val 3

newVal

Variable Scope

def myfunc (val):

val

= val + 1

print(val =", val)

return val

val = 3

newVal

myfunc(val)

Global scope

myfunc

val

newVal

Some
code

3

s

myfunc frame

val 3

val = val + 1
print(val =, val)

return val

Variable Scope

def myfunc (val):
val = val + 1
print(val =", val)

return val

Global
DAt SEOPE myfunc frame

val = 3 Some

myfunc val |3 |4
newVal = myfunc(val) code

val 3 val = val + 1

} print(val =, val)

newVal return| val «—— 4

Variable Scope

def myfunc (val):

val

= val + 1

print(val =", val)

return val

val = 3

newVal

myfunc(val)

Function frame destroyed
(and all local variables lost)
after return from call

Global scope

myfunc

val

newVal

Some
code

-—

Information flow out of a function is only through return statements !

Acknowledgments
 These slides have been adapted from:

* hitp://cs111.wellesley.edu/spring19 and

e https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-0001-
Introduction-to-computer-science-and-
programming-in-python-fall-2016/

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

