
Searching and Sorting

• Search Problem. Given a list of length and an item ,
is item present in ?

• Function linearSearch(L, e)

• Examples

>>> linearSearch([12, 16, 23, 2, 7], 16)

True

>>> linearSearch(['hello', 'world', 'silly'], 'hi')

False

>>> linearSearch(['a', 'e', 'i', 'o', 'u'], 'u')

True

L n e
e L

Searching in a List

• Search Problem. Given a list of length and an item ,
is item present in ?

• In the worst case need to look through the entire list

• algorithm

L n e
e L

O(n)

Searching in an Unsorted List

What if the list is sorted?

• How do we look up a word in a dictionary?
• Words are listed in alphabetical order

Example: Dictionary

• How do we look up a word in a dictionary?
• Words are listed in alphabetical order

Searching in a Dictionary

Let’s assume we don’t have these
tabs to help us out

• Look at the middle page of the dictionary for our query word
• If we find our query, great!
• Otherwise:

• If our query is later in alphabetical order to the words on
the page, look for the query between the middle page and
the last page

• If our query is earlier in alphabetical order, look for the
query between the middle page and the first page

Search Algorithm

• Goal: Analyze how many pages we need to look at to look
a word up in the dictionary

• Want the worst case: it’s possible that I’m looking for a
word that’s right on the middle page

• Each time we look at the “middle” page remaining, the
number of pages we need to look at is divided by 2
(Actually slightly better since we can rule out the middle
page itself)

• A 1024-page dictionary requires at most 11 lookups:  
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4,
<2, <1 page.

• Just needed to look at 11 pages out of 1024 !

• Can we generalize this for an page dictionary?n

How Good is This?

• Logarithms are the inverse function to exponentiation

• Thus, describes the exponent to which base must
be raised to produce

• That is,

• Another way to look at logarithms:

• is, essentially, the number of times must be
divided by to reduce it to

• For us, important takeaway:

• How many times can we divide by until we get
down to

•

logb n b
n

blogb n = n

logb n n
b 1

n 2
1

≈ log2 n

Review: Logarithm

• Logarithms are defined by the relationship

• The value is, essentially, the number of times must
be divided by to reduce it to

• In CS, we often set as we often design solutions
where we divide the problem size in half

• We ignore base in Big Oh notation because they affect the
value by a constant, that is,

• Thus we write to describe logarithmic growth
with respect to the input

n = blogb n

logb n n
b 1

b = 2

loga n =
logb n
logb a

= logb n ⋅ loga b = c logb n

O(log n)

Log Summary

Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e == L[m],
return True

Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e < L[m], then need to
search in L[:m]

If e == L[m],
return True

Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to
search in L[m+1:]

If e < L[m], then need to
search in L[:m]

If e == L[m],
return True

• Base cases:
• Positive: if e == L[m], return True
• Negative: if len(L) == 0, return False

Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to
search in L[m+1:]

If e < L[m], then need to
search in L[:m]

If e == L[m],
return True

• Let's implement this algorithm
• See Jupyter Notebook

Binary Search Code

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to
search in L[m+1:]

If e < L[m], then need to
search in L[:m]

If e == L[m],
return True

Analysis of Binary Search

• Within a recursive call (function frame):
• Constant number of steps (independent on) and

including at most one recursive call
• Total number of steps:

n

O(# of recursive calls)

Binary Search Analysis

• How many recursive calls? How many timing can we
halve until either we find the element or has size

• Size goes down by half in each recursive call:  
 

 

• Number of recursive calls at most

• Overall binary search is a algorithm

L L < 1

n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

log2 n + 1
O(log n)

Binary Search Analysis

• Number of recursive calls at most

• Overall binary search is a algorithm

• Grows very slowly with respect to !

log2 n + 1
O(log n)

n

Binary Search Analysis

 (1 billion) ~ 30log2

Sorting Algorithms

• Problem. Given a list of elements, sort those elements in
ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions in Python

• sorted: returns new sorted list

• sort(): destructive sort that sorts the list its called on

• Today: how do we design our own sorting algorithm

• Question. What is the best way to sort items?

• We will use Big Oh to find out!

n

The Sorting Problem

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• Find the smallest element and move it to the first position.

• Find the second-smallest element and move it to the second
position, and so on

Selection Sort
• For each index in the list L, we need to find the min item in

L[i+1:], if its smaller than L[i], swap L[i] with that item
i

i

Selection Sort
• For each index in the list L, we need to find the min item in

L[i+1:] so we can replace L[i] with that item

• In fact we need to find the position minPosition of the
item that is minimum in L[i+1:]

• Reminder: how to swap values of variables a and b?

• Using tuple assignment in Python: 
a, b = b, a

• Let's implement this algorithm

i

Selection Sort: Analysis

Selection Sort Analysis
• For , inner loop runs items

• For , inner loop runs times

• ...

• For , inner loop runs times

i = 0 n − 1
i = 1 n − 2

i = n − 1 0

Selection Sort Analysis
• Within the inner loop we have steps (constant)

• Overall number of steps  

• What is this sum?

O(1)
(n − 1) + (n − 2) + ⋯ + 0

≤ n + (n − 1) + (n − 2) + ⋯ + 1

Selection Sort Analysis
• Finding minimum element takes steps

• Finding minimum of what remains takes steps, etc.

• Total number of steps

• What does this sum to?

n

n − 1
n + (n − 1) + (n − 2) + ⋯ + 1

Guassian Summation

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

Selection Sort Analysis
• Total number of steps

• Is this the best we can do for sorting?

• No! Can sort in time !

• Next lecture: merge sort, a faster recursive sorting algorithm
that is optimal

O(n(n + 1)/2)
= O(n(n + 1))

= O(n2 + n)

= O(n2)

O(n log n)

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/

• Selection sort images from: https://web.stanford.edu/class/
archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

