
Searching and Sorting



• Search Problem.  Given a list  of length  and an item , 
is item  present in ?   

• Function linearSearch( L, e)

• Examples 

>>> linearSearch([12, 16, 23, 2, 7], 16)

True

>>> linearSearch(['hello', 'world', 'silly'], 'hi')

False

>>> linearSearch(['a', 'e', 'i', 'o', 'u'], 'u')

True

L n e
e L

Searching in a List



• Search Problem.  Given a list  of length  and an item , 
is item  present in ?   

• In the worst case need to look through the entire list 

•  algorithm

L n e
e L

O(n)

Searching in an Unsorted List



What if the list is sorted?



• How do we look up a word in a dictionary? 
• Words are listed in alphabetical order

Example:  Dictionary



• How do we look up a word in a dictionary? 
• Words are listed in alphabetical order

Searching in a Dictionary

Let’s assume we don’t have these 
tabs to help us out



• Look at the middle page of the dictionary for our query word 
• If we find our query, great! 
• Otherwise:  

• If our query is later in alphabetical order to the words on 
the page, look for the query between the middle page and 
the last page 

• If our query is earlier in alphabetical order, look for the 
query between the middle page and the first page

Search Algorithm



• Goal: Analyze how many pages we need to look at to look 
a word up in the dictionary 

• Want the worst case: it’s possible that I’m looking for a 
word that’s right on the middle page 

• Each time we look at the “middle” page remaining, the 
number of pages we need to look at is divided by 2 
(Actually slightly better since we can rule out the middle 
page itself) 

• A 1024-page dictionary requires at most 11 lookups:  
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, 
<2,  <1 page. 

• Just needed to look at 11 pages out of 1024 ! 

• Can we generalize this for an  page dictionary?n

How Good is This?



• Logarithms are the inverse function to exponentiation  

• Thus,  describes the exponent to which base  must 
be raised to produce  

• That is,  

• Another way to look at logarithms:  

•  is, essentially, the number of times  must be 
divided by  to reduce it to  

• For us, important takeaway: 

• How many times can we divide  by  until we get 
down to  

•  

logb n b
n

blogb n = n

logb n n
b 1

n 2
1

≈ log2 n

Review: Logarithm



• Logarithms are defined by the relationship  

• The value  is, essentially, the number of times  must 
be divided by  to reduce it to  

• In CS, we often set  as we often design solutions 
where we divide the problem size in half  

• We ignore base in Big Oh notation because they affect the 
value by a constant, that is, 

 

• Thus we write  to describe logarithmic growth 
with respect to the input

n = blogb n

logb n n
b 1

b = 2

loga n =
logb n
logb a

= logb n ⋅ loga b = c logb n

O(log n)

Log Summary



Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e == L[m], 
return True
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Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to 
search in L[m+1:]

If e < L[m], then need to 
search in L[:m]

If e == L[m], 
return True



• Base cases: 
• Positive: if e == L[m], return True 
• Negative: if len(L) == 0, return False

Binary Search Algorithm

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to 
search in L[m+1:]

If e < L[m], then need to 
search in L[:m]

If e == L[m], 
return True



• Let's implement this algorithm  
• See Jupyter Notebook

Binary Search Code

0 n = len(L)

sorted list L

m = n//2

If e > L[m], then need to 
search in L[m+1:]

If e < L[m], then need to 
search in L[:m]

If e == L[m], 
return True



Analysis of Binary Search



• Within a recursive call (function frame):  
• Constant number of steps (independent on ) and 

including at most one recursive call 
• Total number of steps: 

n

O(# of recursive calls)

Binary Search Analysis



• How many recursive calls?  How many timing can we 
halve  until either we find the element or  has size  

• Size goes down by half in each recursive call:  
 

 

• Number of recursive calls at most  

• Overall binary search is a  algorithm

L L < 1

n → n/2 → n/4 → n/8 → ⋯ → n/2i = 1

log2 n + 1
O(log n)

Binary Search Analysis



• Number of recursive calls at most  

• Overall binary search is a  algorithm 

• Grows very slowly with respect to  !

log2 n + 1
O(log n)

n

Binary Search Analysis

 (1 billion) ~ 30log2



Sorting Algorithms



• Problem. Given a list of elements, sort those elements in 
ascending order. 

• There are many ways to solve this problem! 

• Built-in sorting functions in Python 

• sorted: returns new sorted list 

• sort(): destructive sort that sorts the list its called on 

• Today:  how do we design our own sorting algorithm 

• Question.  What is the best way to sort  items? 

• We will use Big Oh to find out!

n

The Sorting Problem



Selection Sort
• Find the smallest element and move it to the first position.  

• Find the second-smallest element and move it to the second 
position, and so on
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• Find the smallest element and move it to the first position.  
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Selection Sort
• For each index  in the list L, we need to find the min item in 

L[i+1:], if its smaller than L[i], swap L[i] with that item
i

i



Selection Sort
• For each index  in the list L, we need to find the min item in 

L[i+1:] so we can replace L[i] with that item 

• In fact we need to find the position minPosition of the 
item that is minimum in L[i+1:] 

• Reminder:  how to swap values of variables a and b? 

• Using tuple assignment in Python: 
a, b = b, a 

• Let's implement this algorithm

i



Selection Sort:  Analysis



Selection Sort Analysis
• For , inner loop runs  items 

• For , inner loop runs  times 

• ... 

• For , inner loop runs  times

i = 0 n − 1
i = 1 n − 2

i = n − 1 0



Selection Sort Analysis
• Within the inner loop we have  steps (constant) 

• Overall number of steps  
 

• What is this sum?

O(1)
(n − 1) + (n − 2) + ⋯ + 0

≤ n + (n − 1) + (n − 2) + ⋯ + 1



Selection Sort Analysis
• Finding minimum element takes  steps 

• Finding minimum of what remains takes  steps, etc. 

• Total number of steps  

• What does this sum to?

n

n − 1
n + (n − 1) + (n − 2) + ⋯ + 1



Guassian Summation 

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2



Selection Sort Analysis
• Total number of steps 

 

 

 

 

• Is this the best we can do for sorting? 

• No!  Can sort in  time ! 

• Next lecture:  merge sort, a faster recursive sorting algorithm 
that is optimal

O(n(n + 1)/2)
= O(n(n + 1))

= O(n2 + n)

= O(n2)

O(n log n)



These slides have been adapted from: 
• http://cs111.wellesley.edu/spring19 and  

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/  

• Selection sort images from: https://web.stanford.edu/class/
archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
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