Searching and Sorting

Searching in a List

« Search Problem. Given a list L of length n and an item e,
S item e present in L?

 [Function 1inearSearch(L, e)

e Examples

>>> linearSearch([12, 16, 23, 2, 7], 16)

True

>>> linearSearch(['hello', 'world', 'silly'], 'hi')
False

e', '1', 'o', 'u'l, 'u’)

>>> linearSearch(['a’,

True

Searching in an Unsorted List

« Search Problem. Given a list L of length n and an item e,
S item e present in L?

* |nthe worst case need to look through the entire list

« ((n) algorithm

def linearSearch(L, e):

n = len(L)
for item in L:
if item == e:

return True
return False

What if the list is sorted?

e,
i

i

iy
i}

(i

" 3
 of peivacy § e

.
-
,W.JW_ .

?

&

:...«..

Ictionary

jionary

i

il éuL

i
4

M;

- Clarvedss,
|) b
o

Dict

 How do we look up aword inad

Example

lphabetical order

e Words are listed in a

:ll.lf » -

N

Mawn

d ‘r”.'."*"

EFRTE T S
g O

bt 4P

Searching in a Dictionary

 How do we look up a word in a dictionary”?

 Words are listed in alphabetical order

;

WIP[IYD ¥O0d ATRuondIi(] @D

/
\

- 3.‘, |

America’s Best-Selling Dictionary

Aseuonyadia @)

s J91SqaM-WelaN
S IS -TIELLIOTA]

Merriam-
Webster’s

Collegiate

Dictionary /j8 = §Z

L]
B CHOICE & .
»

Aleuo:
S J9isqapm-wensap -

(
Js,

‘AAeuo

J s Jojsqapwe s

i

fsuoIsnyy ©An
Areuondn(ysod @

SIONPT] 19 SIALIAA 10] [ENUPIA

NOILIA3 GYIHL

- Areuondi(q peanydeiSooan)

Q
)

Eleventh Edition

ke
&

Let’s assume we don’t have these
tabs to help us out

Search Algorithm

iddle page of the dictionary for our query word

Look at the m

d our query, great!

1N

I we fi

2 ¥ Srom racornch.)
-

s K. of Mo,
-

"Eawar, 1 ¥

1 % 1 {rotrameb
ey
o

e, very Yowr”
T The st of

€0 Lhad
o Oa fpuns, the

of yeticng,
of petvacy re-

T 117

wm.m_.

., m i :m
;wm w__

haciey,
- -

vetribur, Br) T

- o (rerribes, Lan,
ey of.

147 baii s ve make
Y18hua

Te RETRIEUTE.

s
.y Psee

O
-
nﬂua
5 O O
Sg T
p |
So 29
e S Q
= O O 5
Om r.,n._m
— ee
O L O =
+— |
ST 0%
O aunﬂu
T 2 O ©
CW T O
.._Uﬁ mg
fo i © ©
o > c QO
Rl L o
Q > T 5
c O £ O
c O -
S B°E
QO -
= O =
DO <= O ~
.s%e.nb%
>= 2P >3z
oa 8o
N c D
2 = 0o ® = >
= 2 2 O
c O O O O =
Q =55 =0
mQ o
o

IS This?

Analyze how many pages we need to look at to ook

How Good

e Goal

a word up In the dictionary

)
=
O N
@)
O) -
S [=
o @
O -
0
m |
- O
& %
)
S5 2
28 o
O e
— O
® T 2
O T -
p.lu
w £ O
= 0 =
..
DT
T O =<
O .~ 9
._I..hhu
52 ¢
o5 g
© 8 &
+— 4=
c © £
© O %
= =

number of pages we need to look at is divided by 2

(Actually slightly better since we can rule out the middle

page itself)
A 1024-page dict

t most 11 lookups

jionary requires a

Ker :I"’,,‘.‘ X

e

J-._--..o'

1024 pages, < 512, <2506, <128, <64, <32, <10, <3, <4,

<2, <1 page.

R L T
B e W

" pare A

u.:

mz?.:

* Just needed to look at 11 pages out of 1024 |

S i wehoon,
et

rironbmests,

-uz. ”
Sy

- whvocss ler On
: haciey,
« Te RETRIEUTE «. a. {reiribes, Lav,
Hpaymen of.

YBhua

1 wowid raher b
e snconin of this
1oy e s e make

o

i
%

?

iIctionary

« Can we generalize this for an n page d

Review: Logarithm

Logarithms are the inverse function to exponentiation

Thus, log, n describes the exponent to which base b must
be raised to produce n

That is, b°%" = n
Another way to look at logarithms:

. log, n is, essentially, the number of times n must be
divided by b to reduce itto 1

For us, important takeaway:

« How many times can we divide n by 2 until we get
down to 1

¢ X lngn

Log Summary

. Logarithms are defined by the relationship n = b'°&"

 The value log, n is, essentially, the number of times n must
be divided by b to reduce it to 1

« In CS, we often set b = 2 as we often design solutions
where we divide the problem size in halt

 We ignore base in Big Oh notation because they affect the

value by a constant, that is,
log, n

log n = = log,n-log, b = clog,n
log, a

« Thus we write O(log n) to describe logarithmic growth
with respect to the input

Binary Search Algorithm

If e == L[m],
return True

v

0 m= n//2 n = len(L)

sorted list L

Binary Search Algorithm

If e == L[m],
return True

If e < L[m], then need to
search in L[:m] |

0 m= n//2 n = len(L)

sorted list L

Binary Search Algorithm

If e == L[m],
return True

If e < L[m], then need to If e > L[m], then need to
search in L[:m] search in L[m+1:]

4

0 m= n//2 n = len(L)

sorted list L

Binary Search Algorithm

e Base cases:
* Positive: 1f e == L[m], return True

 Negative: 1f len(L) == 0, return False

If e == L[m],
return True

If e < L[m], then need to If e > L[m], then need to
search in L[:m] search in L[m+1:]

.

0 m= n//2 n = len(L)

sorted list L

Binary Search Code

* Let's implement this algorithm

e See Jupyter Notebook

If e == L[m],
return True
If e < L[m], then need to If e > L[m], then need to
search in L[:m] \ | search in L[m+1:]

sorted list L

0 m

n//2 n = len(L)

Analysis of Binary Search

Binary Search Analysis

* Within a recursive call (function frame):

« Constant number of steps (independent on n) and
iIncluding at most one recursive call

« Total number of steps: O(# of recursive calls)

def binarySearch(L, e):
if len(L) == O0O:
return False
else: # recursive case
if L[mid] == e:
return True
elif e <= L[mid]:

return |binarySearch(L[:mid], e)

else:

return |binarySearch(L[mid+1:], e

Binary Search Analysis

 How many recursive calls? How many timing can we
halve L until either we find the element or L has size < 1

e Size goes down by half in each recursive call:
n—nl2 ->nld—->nl8— - ->n/2=1

def binarySearch(L, e):
if len(L) ==
return False
else: # recursive case
if L[mid] == e:
return True
elif e <= L[mid]:
return binarySearch(L[:mid], e)

else:
return binarySearch(L[mid+1:], e)

Binary Search Analysis

« Number of recursive calls at most log, n + 1
« Overall binary search is a O(log n) algorithm

o (Grows very slowly with respectto n !

Time
O(log n)

log, (1 billion) ~ 30

Data Input

Sorting Algorithms

The Sorting Problem

e Problem. Given a list of elements, sort those elements In
ascending order.

 T[here are many ways to solve this problem!
e Built-in sorting functions in Python
e sorted: returns new sorted list
e sort(): destructive sort that sorts the list its called on
 TJoday: how do we design our own sorting algorithm
« Question. What is the best way to sort n items?

 We will use Big Oh to find out!

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

=« 000
1 2 4

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

.
1 2 4

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second
position, and so on

Selection Sort

 Find the smallest element and move it to the first position.

e Find the second-smallest element and move it to the second

position, and so on
=z B I I I
1 2 4 0 7

Selection Sort

e Foreachindexiinthe list L, we need to find the min item in
L[1+1:], ifitssmallerthan L[1], swap L[1] with thatitem

= B
1 2

4 7 6
T
j

Selection Sort

e Foreachindexiinthe list L, we need to find the min item in
L[1+1:] sowecanreplace L[1] with that item

* |nfact we need to find the position menPosition of the
item that is minimum in L[1+1:]

 Reminder: how to swap values of variables a and b?

* Using tuple assignment in Python:
a, b = b, a

 |et's implement this algorithm

Selection Sort: Analysis

Selection Sort Analysis

e Fori=20,innerlooprunsn — 1 items

e Fori =1, innerloop runs n — 2 times

n — 1, inner loop runs O times

e Fori

def selectionSort(L):
"""Destructive sort of list L,
returns sorted list."""
n = len(L)
for 1 in range(n):
minPosition = 1
for j in range(i+l, n):
if L[minPosition] > L[]]:
minPosition = j
L[1i], L[minPosition] = L[minPosition], L[1]
return L

Selection Sort Analysis

« Within the inner loop we have O(1) steps (constant)

e Overall numberofsteps(n—1)+mn—-2)+ --- +0
<nd+(n-1D+mn-2)+--+1

e What is this sum?

def selectionSort(L):

"""Destructive sort of list L,
returns sorted list."""
n = len(L)
for 1 in range(n):

minPosition = 1

for j in range(i+l, n):

if L[minPosition] > L[]]:
minPosition = j

L[1i], L[minPosition] = L[minPosition], L[1]

return L

Selection Sort Analysis

n+Mmn-1)+..+2+1=nn+1)/2

(Guassian Summation

S=n+mn-1DH)+mn-2)+--+2+1
s dS=14+24+--4+m-2)+(n—-1)+n

2S=mnm+1H)+(n+DH+--+nn+DH+n+1D+ B+ 1)

2S5=m+1)-n
S=mn+1)-n-1/2

Selection Sort Analysis

e Total number of steps
Onn+1)/2)

= 0O(nmn+ 1))

= O(n* + n)

= 0(n?)
* |s this the best we can do for sorting”
« No! Can sortin O(nlogn) time !

 Next lecture: merge sort, a faster recursive sorting algorithm
that Is optimal

Acknowledgments

These slides have been adapted from:

o http://cs111.wellesley.edu/spring19 and

o https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/

» Selection sort images from: https://web.stanford.edu/class/
archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1126/lectures/11/Slides11.pdf

