
Overview of the  
Coming Week: May 4-8

• We've made it so far! Yay!

• Second last week of classes

• What days of the week are we in? May 4 - May 8

• Things that are coming up:

• HW 8 (Recursion) due on Monday May 4

• HW 9 will be released Wed May 6, due May 11

• Lab 10 (Oracle) is due May 7 (Extra credit & Optional)

• No quiz this Friday (May 8)

• Quiz 3 and 4 will be held May 15 and 22

• One stop shop for all course information: GLOW course
homepage!

Overview of this Week

• So far in the course we have focused on solving various
problems computationally

• The sequence of steps we follow to solve the problem (the
recipe of our program) is called an algorithm

• How do we know if a particular algorithm is any good?
• Topic 1. Efficiency. How do we measure efficiency and

performance of an algorithm?
• "Big Oh" notation

Designing and analyzing algorithms:
• Topic 2. Searching. Exploring and analyzing efficient

algorithms for searching in a sorted sequence
• Topic 3. Sorting. Exploring different sorting algorithms and

comparing their performance

Lecture Topics

Any Questions, Come See Us!

Measuring Efficiency

• How do we measure how efficiency of our program?
• We want programs that run "fast"
• But what do we mean by that?

• One idea: use a stopwatch to see how long it takes.
• Is this a good method?
• What is the stop watch really measuring?
• How long does this piece of code takes on this machine

on this particular input
• Machine dependent

• We want to evaluate our program not the machine's speed
• Cannot make any general conclusion

• Doesn't tell us how fast the program will be different inputs

Measuring Efficiency

We want a method to evaluate efficiency that:
• Platform independent. Is independent of the

machine
• Implementation independent. Is independent of

the implementation details
• Guarantees that hold for different types of inputs.

Can help us make general conclusions about how
the program will do on any arbitrary input

• Dependence on input size. Captures how the
performance will "scale" when the input gets bigger

• "Has the right level of specificity".

• We don't want to be too specific (cumbersome)
• Measure things that matter, ignore what doesn't

Efficiency Metric: Goals

Evaluating the program, rather than the speed of the
machine its run on.

Platform Independent

Actually, we want to evaluate the problem solving strategy
(the algorithm) rather than the "program" itself.

• Count number of steps taken by the algorithm
• Sometimes referred to as "running time" (abusing term)

Implementation Independent

• We can't just analyze our algorithm on few inputs and
declare victory

• Best case. Minimum number of steps taken over all
possible inputs of a given size

• Average case. Average number of steps taken over all
possible inputs of a given size

• Worst case. Maximum number of steps taken all possible
inputs of a given size.

Worst-Case Guarantees

Takeaway. We want provable guarantees, regardless of the input.

• Don't care about performance on "small inputs"
• Instead we care about "the rate at which it grows" with

respect to the input size
• Big-O notation is a way of quantifying (in fact, upper

bounding) how the function grows wrt input size
• For example:

• A square of side length has area .

• A circle of radius has area .

r O(r2)
r O(r2)

Dependence on Input Size

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Big Oh notation is designed to capture the rate at which
which the number of steps taken by the algorithm grows
wrth size of input , "as gets large"

• Not precise by design, it ignores information about

• Multiplication constants, e.g.

• Lower-order terms: terms that contribute to the growth
but are not dominant, so they get glossed over  

• Powerful tool for predicting performance behavior: focuses
on what matters, ignores the rest

• Separates fundamental improvements from smaller
optimizations

n n

100n = O(n)

O(n2 + n + 10) = O(n2)

Big Oh: Level of Specificity

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

2 4 6 8 10 12

5000

10000

15000

100 x2 - 100 x + 500

10 x3 + 10 x2 + x + 500O(x3) =

O(x2) =

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Summing up items in a list of numbers

• Assume basic operations such as variable assignments,
addition, multiplication represent a "single step"  
 
 
 
  
 
 

• Total time steps 1 + n = O(n)

Example Analysis

• # assume numList is a list of integers  
sum = 0 # line 1 1 step 
for item in numList:  
 sum = sum + item Single step executed len(numList) timesn =

3, 4, 20, 12, 2, 20

61

sum

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Okay to overestimate: we are computing an upper bound

• Worst case analysis: doesn't matter if faster on some inputs  
 
 
 
  
 
 
 
 

• Statements in loop body execute len(L) times and
other operations take constant number of steps

• Thus, overall takes time

n =

O(n)

Searching in an Unsorted List

def linearSearch(e, L):
 for elem in L:
 if elem == e:
 return True
 return False

Might not always run, but assume it does: overestimate

Might return early if e is first item in list
but interested in the worst case;  
happens if e is not in the list or last item

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Okay to overestimate: we are computing an upper bound

• Worst case analysis: doesn't matter if faster on some inputs  
 
 
 
  
 
 
 
 

• Overall we have steps2 ⋅ n + c = O(n)

Searching in an Unsorted List

def linearSearch(e, L):
 for elem in L:
 if elem == e:
 return True
 return False

2 steps, executed len(L) timesn =

1 step

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Algorithms that take steps proportional to the size of the
input, are called linear time algorithms or time

• Examples: length of input sequence

• Summing up a list of numbers

• Searching in an unsorted list

• Any algorithm where we iterate over a sequence of length
and do constant number of operations within the loop

• Any algorithm that "touches" all input items

• "Simple loops" are usually

• But what about "nested loops"?

O(n)
n =

n

O(n)

Linear Algorithms: O(n)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Usually occurs when we have a loop within a loop ("nested")

• Example: determining if a list is a subset of another list
(that is, every item in is in) e.g. is a
subset of

L1 L2
L1 L2 L1 = [2,4,6]

L2 = [1,2,3,4,5,6]

Quadratic Steps: O(n2)

def subsetOf(L1, L2):
 matched = False
 for e1 in L1:
 for e2 in L2:
 if e1 == e2:
 matched = True
 if not matched:
 return False
 return True

Found e1 in list L2

If e1 not in L2, can return False

If we reach this line, we have found a match for all elements

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Usually occurs when we have a loop within a loop ("nested")

• Example: determining if a list is a subset of another list
(that is, every item in is in) e.g. is a
subset of

L1 L2
L1 L2 L1 = [2,4,6]

L2 = [1,2,3,4,5,6]

Quadratic Steps O(n2)

def subsetOf(L1, L2):
 matched = False
 for e1 in L1:
 for e2 in L2:
 if e1 == e2:
 matched = True
 if not matched:
 return False
 return True

Found e1 in list L2

Executes steps, where len(L1) ≤ n n = len(L2)

matched = linearSearch(e1, L2) stepsO(n)
 stepsO(n2)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Usually when you have a nested loop, e.g.  
 
for i in range(n):  
 for j in range(n):  
 print('something')

• When you are iterating over two sequences and comparing
items, e.g.,

• checking if a string is a substring of another string

• finding common elements between two sequences

Quadratic Steps O(n2)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

• Sequential loops vs nested loops are like addition vs
multiplication when it comes to big Oh

• For example 
for i in range(n):  
 print('a')  
for j in range(n):  
 print('a')

• Versus 
for i in range(n):  
 for j in range(n):  
 print('a')

Two loops vs Nested Loops

 stepsO(n)

 stepsO(n)
 stepsO(n) + O(n) = O(n)

 stepsO(n) steps O(n) * O(n) = O(n2)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

Why We Aren't Stating the Definition

Definition: is if there exists constants and
such that for all

In other words, for sufficiently large , is asymptotically bounded
above by  

Examples

•

•

•

f(n) O(g(n)) c > 0 n0 ≥ 0
0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

n f(n)
g(n)

100n2 = O(n2)

n log n = O(n2)

5n3 + 2n + 1 = O(n3)

c · g(n)

nn0

f(n)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

Common Big Oh Functions

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

What's Next

• What on earth is

• Searching in a sorted list:

• Can we search faster than if the list is sorted?

• Binary search: algorithm that takes steps

• Sorting algorithms:

• We have used Python's in-built sorting methods

• How do we design our own sorting algorithm?

• How long does sorting a list of takes?

• Example of an algorithm

• Example of an exponential time algorithm

log n

O(n)

O(log n)

n

O(n log n)

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1204/lectures/11/Slides11.pdf

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-0001-introduction-to-computer-science-and-
programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

