Graphical Recursion II
Trees
Recursive Trees

tree(trunkLen, levels, angle, shrinkFactor)

- **trunkLen**: is the length of the base trunk of the tree
- **levels**: is the number of branches on any path from root to leaf
- **angle**: is the angle from the trunk of the right and left branches
- **shrinkFactor**: is the factor by which the trunkLen of the branches goes down by
How to make a 4-level tree?

tree(100, 4, 45, 0.6)

Step 1
Make a trunk of size 100

Step 2
and two 3-level trees with 60% trunks set at 45° angles
How to make a 3-level tree?

```
Make a trunk of size 60
```
```
tree(60, 3, 45, 0.6)
```

and two 2-level trees with 60% trunks set at 45° angles

How to make a 2-level tree?

```
Make a trunk of size 36
```
```
tree(36, 2, 45, 0.6)
```

and two 1-level trees with 60% trunks set at 45° angles

How to make a 1-level tree?

```
Make a trunk of size 21.6
```
```
tree(21.6, 1, 45, 0.6)
```

and two 0-level trees set at 45° angles

How to make a 0-level tree?

```
Do nothing!
```
```
tree(12.96, 0, 45, 0.6)
```

How to make a 0-level tree?
Trees

tree(200, 3, 45, 0.6)

tree(200, 7, 15, 0.8)

tree(200, 7, 30, 0.8)

tree(200, 10, 45, 0.7)
Function Frame Model to Understand $\text{tree}(60, 3, 45, 0.6)$
Draw trunk and turn to draw level 2 tree

\[\text{tree}(3, 60, 45, 0.6) \]

\[\text{fd}(60) \]

\[\text{rt}(45) \]
Begin recursive invocation to draw level 2 tree

draw tree(2, 36, 45, 0.6)

draw tree(3, 60, 45, 0.6)

fd(60)
rt(45)
tree(2, 36, 45, 0.6)
Draw trunk and turn to draw level 1 tree

\[
\text{tree}(3, 60, 45, 0.6)
\]

\[
\text{tree}(2, 36, 45, 0.6)
\]

\[
\text{fd}(60) \\
\text{rt}(45) \\
\text{tree}(2, 36, 45, 0.6)
\]

\[
\text{fd}(36) \\
\text{rt}(45)
\]

Source: http://cs111.wellesley.edu/spring19
Begin recursive invocation to draw level 1 tree

```
fd(60)
rt(45)
tree(2,36,45,0.6)
```

```
tree(2,36,45,0.6)
fd(36)
rt(45)
tree(1,21.6,45,0.6)
```

```
tree(1,21.6,45,0.6)
```

```
tree(3,60,45,0.6)
```

Source: http://cs111.wellesley.edu/spring19
Draw trunk and turn to draw level 0 tree

```
fd(60)
rt(45)
tree(2, 36, 45, 0.6)
```

```
fd(36)
rt(45)
tree(1, 21.6, 45, 0.6)
```

```
fd(21.6)
rt(45)
tree(1, 21.6, 45, 0.6)
```

```
tree(2, 36, 45, 0.6)
tree(3, 60, 45, 0.6)
```

Source: http://cs111.wellesley.edu/spring19
Begin recursive invocation to draw level 0 tree

```
    tree(60, 3, 45, 0.6)
    tree(2,36,45,0.6)
      fd(36)
      rt(45)
      tree(1,21.6,45,0.6)
    tree(3,60,45,0.6)
      fd(60)
      rt(45)
      tree(2,36,45,0.6)
  tree(1,21.6,45,0.6)
    fd(21.6)
    rt(45)
    tree(0,12.96,45,0.6)
```
Complete level 0 tree and turn to draw another level 0 tree.
Begin recursive invocation to draw level 0 tree

tree(60, 3, 45, 0.6)

Source: http://cs111.wellesley.edu/spring19
Complete level 0 tree and return to starting position of level 1 tree

Source: http://cs111.wellesley.edu/spring19
Complete level 1 tree and turn to draw another level 1 tree

\[
\text{tree}(2, 36, 45, 0.6)
\]

\[
\begin{align*}
&\text{fd}(36) \\
&\text{rt}(45) \\
&\text{tree}(1, 21.6, 45, 0.6) \\
&\text{lt}(90)
\end{align*}
\]

\[
\text{tree}(3, 60, 45, 0.6)
\]

\[
\begin{align*}
&\text{fd}(60) \\
&\text{rt}(45) \\
&\text{tree}(2, 36, 45, 0.6)
\end{align*}
\]

\[
\begin{align*}
&\text{tree}(1, 21.6, 45, 0.6) \\
&\text{fd}(21.6) \\
&\text{rt}(45) \\
&\text{tree}(0, 12.96, 45, 0.6) \\
&\text{lt}(90) \\
&\text{tree}(0, 12.96, 45, 0.6) \\
&\text{rt}(45) \\
&\text{bk}(21.6)
\end{align*}
\]
Begin recursive invocation to draw level 1 tree

\[
\begin{align*}
\text{tree}(3, 60, 45, 0.6) &:\text{fd}(60) \\
\text{rt}(45) &; \text{tree}(2, 36, 45, 0.6) \\
\text{tree}(2, 36, 45, 0.6) &:\text{fd}(36) \\
\text{rt}(45) &; \text{tree}(1, 21.6, 45, 0.6) \\
\text{lt}(90) &; \text{tree}(1, 21.6, 45, 0.6) \\
\text{tree}(1, 21.6, 45, 0.6) &:\text{fd}(21.6) \\
\text{rt}(45) &; \text{tree}(0, 12.96, 45, 0.6) \\
\text{lt}(90) &; \text{tree}(0, 12.96, 45, 0.6) \\
\text{rt}(45) &; \text{bk}(21.6) \\
\text{tree}(1, 21.6, 45, 0.6) &;
\end{align*}
\]
Draw trunk and turn to draw level 0 tree

- `tree(3, 60, 45, 0.6)`
 - `fd(60)`
 - `rt(45)`
 - `tree(2, 36, 45, 0.6)`

- `tree(2, 36, 45, 0.6)`
 - `fd(36)`
 - `rt(45)`
 - `tree(1, 21.6, 45, 0.6)`
 - `lt(90)`
 - `tree(1, 21.6, 45, 0.6)`

- `tree(1, 21.6, 45, 0.6)`
 - `fd(21.6)`
 - `rt(45)`
 - `tree(0, 12.96, 45, 0.6)`
 - `lt(90)`
 - `tree(0, 12.96, 45, 0.6)`
 - `rt(45)`
 - `bk(21.6)`
 - `tree(1, 21.6, 45, 0.6)`

- `tree(1, 21.6, 45, 0.6)`
 - `fd(21.6)`
 - `rt(45)`
Complete two level 0 trees and return to starting position of level 1 tree
Complete level 1 tree and return to starting position of level 2 tree

tree(3, 60, 45, 0.6)
 fd(60)
 rt(45)
 tree(2, 36, 45, 0.6)

 tree(2, 36, 45, 0.6)
 fd(36)
 rt(45)
 tree(1, 21.6, 45, 0.6)
 lt(90)
 tree(1, 21.6, 45, 0.6)
 rt(45)
 bk(36)

 tree(1, 21.6, 45, 0.6)
 fd(21.6)
 rt(45)
 tree(0, 12.96, 45, 0.6)
 lt(90)
 tree(0, 12.96, 45, 0.6)
 rt(45)
 bk(21.6)
Complete level 2 tree and turn to draw another level 2 tree

tree(2,36,45,0.6)
 fd(36)
 rt(45)
 tree(1,21.6,45,0.6)
 lt(90)
 tree(1,21.6,45,0.6)
 bk(36)

fd(21.6)
rt(45)
tree(0,12.96,45,0.6)
lt(90)
tree(0,12.96,45,0.6)
rt(45)
bk(21.6)
tree(1,21.6,45,0.6)
 fd(21.6)
 rt(45)
 tree(0,12.96,45,0.6)
 lt(90)
 tree(0,12.96,45,0.6)
 rt(45)
bk(21.6)

Source: http://cs111.wellesley.edu/spring19
Draw trunk and turn to draw level 1 tree
Draw trunk and turn to draw level 0 tree
Complete two level 0 trees and return to starting position of level 1 tree.
Complete level 1 tree and turn to draw another level 1 tree.
Draw trunk and turn to draw level 0 tree
Complete two level 0 trees and return to starting position of level 1 tree.
Complete level 1 tree and return to starting position of level 2 tree
Complete level 2 tree and return to starting position of level 3 tree
Trace the invocation of \(\text{tree}(3, 60, 45, 0.6) \)

1. \(\text{tree}(3, 60, 45, 0.6) \)
 - \(\text{fd}(60) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(2, 36, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(2, 36, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(36) \)

2. \(\text{tree}(2, 36, 45, 0.6) \)
 - \(\text{fd}(36) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(36) \)

3. \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{fd}(21.6) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(21.6) \)

4. \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{fd}(21.6) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(21.6) \)

5. \(\text{tree}(2, 36, 45, 0.6) \)
 - \(\text{fd}(36) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(36) \)

6. \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{fd}(21.6) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(21.6) \)

7. \(\text{tree}(1, 21.6, 45, 0.6) \)
 - \(\text{fd}(21.6) \)
 - \(\text{rt}(45) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{lt}(90) \)
 - \(\text{tree}(0, 12.96, 45, 0.6) \)
 - \(\text{rt}(45) \)
 - \(\text{bk}(21.6) \)
Fruitful Recursion: Branch Count
Sierpinski Triangle
Sierpinski Triangle

\texttt{sierpinski(sideLen, level)}

- \texttt{sideLen}: length of the outermost triangle
- \texttt{level}: determines \# of subpatterns:
 - level = 0 nothing is drawn
 - level = 1 only a single triangle (no sub patterns)
 - level = \ell \ has level \ell - 1 sierpinski triangles as its subpatterns
sierpinski\,(sideLen, level)

sierpinski(600, 1) sierpinski(600, 2) sierpinski(600, 3)

sierpinski(600, 4) sierpinski(600, 5) sierpinski(600, 6)
def drawTriangle(sideLen):
 """Draws triangle with sides of length sideLen starting from one end point""
 pd()
 fd(sideLen)
 lt(120)
 fd(sideLen)
 lt(120)
 fd(sideLen)
 lt(120)
 pu()
sierpinski(sideLen, level)

- First draw outer big triangle
- Then recursively
 - Draw upper triangle
 - Draw upper left
 - Draw lower right

Starting position of turtle
Concentric Circles
Concentric Circles

concentricCirc(radius, thickness, color1, color2)

- **radius**: radius of the outermost circle
- **thickness**: thickness of the band between circles
- **color1**: color of the outermost circle
- **color2**: color that alternates with color1
def drawDisc(radius, color):
 """Draws a circle of given radius and color with centre (0,0) assuming turtle's initial position is (0, -radius)"""
concentricCirc(radius, thickness, color1, color2)
Fruitful version

concentricCirc(radius, thickness, color1, color2)

- **radius**: radius of the outermost circle
- **thickness**: thickness of the band between circles
- **color1**: color of the outermost circle
- **color2**: color that alternates with color1

Must return tuple of values:

- first item is # of circles of **color1**
- second item is # of circles of **color 2**
Nested Circles
Nested Circles

\[\text{nestedCircles}(\text{radius}, \text{minRadius}, \text{color1}, \text{color2}) \]

- \textit{radius}: radius of the outermost circle
- \textit{minRadius}: minimum radius of any circle
- \textit{color1}: color of the outermost circle
- \textit{color2}: color that alternates with \textit{color1}
nestedCircles(300, 37.5)
Fruitful version

nestedCircles(radius, minRadius, color1, color2)

- radius: radius of the outermost circle
- minRadius: minimum radius of any circle
- color1: color of the outermost circle
- color2: color that alternates with color1

Must return tuple of values:

- first item is # of circles of color1
- second item is # of circles of color 2
Acknowledgments

These slides have been adapted from:

• http://cs111.wellesley.edu/spring19 and