
Fruitful and Graphical
Recursion

• Base case: Solving problem directly.
• Recursive case:

• REDUCE the problem to smaller
subproblem(s) (smaller version(s) of itself)

• DELEGATE the smaller problems to the
recursion fairy (formally known as induction
hypothesis) and assume they're solved
correctly

• COMBINE the solution(s) of the smaller
subproblems to reach/return the solution

Recursive Algorithm

• We say a recursion is fruitful if the recursive
function returns a value (other than None)

Fruitful Recursion

• Let’s write a fruitful recursive function that sums
up integers from 1 down to n (without loops)

• Recursive case. (REDUCE/ DELEGATE/ COMBINE):  
Can think of sum(5) as 5 + sumUp(4)

sumUp(n)

In[1] sumUp(5)

Out[1] 15

In[2] sumUP(10)

Out[2] 55

Unfolding the Recursion

Fruitful Recursion:  
Base Case(s) Required!

What happens if we
eliminate the base case

for sumUp?

Palindromes
EVE

CIVIC
MADAM

AVID DIVA
STEP ON NO PETS

STRESSED DESSERTS
ABLE WAS I ERE I SAW ELBA

LIVED ON DECAF FACED NO DEVIL

• REDUCE it smaller version of the same problem

• Check if s' = s[1:-1] is a palindrome

Recursive Approach

0

s

palindrome(s')
-1

palindrome(s)

• DELEGATE the smaller problems to the recursion
fairy (formally known as induction hypothesis) and
assume they're solved correctly

Recursive Approach

s

palindrome(s')
0 -1

palindrome(s)

• COMBINE the solution(s) of the smaller
subproblems to reach/return the solution

• return True if palindrome(s') is True and
s[0] is same as s[-1]

Recursive Approach

s

palindrome(s')
0 -1

palindrome(s)

Factorial

Factorial. Denoted n!  
 

number of different the arrangements of n items.
n! = n * (n − 1) * (n − 2) * * 2 * 1

3 items were arranged in 6
different ways. Or 3x2x1.

•

•

• Recursive case.  
factorial(n) is n * factorial(n-1)

• Base case. 
factorial(0) = 1

n! = n * (n − 1) * (n − 2) * … * 2 * 1

n! = n * (n − 1)!

factorial(n)

• Fruitful recursion: recursion that "computes
and returns" values

• Remember to implement the base case!

• Remember to store the value returned by
recursive calls!

• Debug using print statements

Summary

Recursion with Turtle Graphics

• Python has a built-in module named turtle.
See the Python turtle module API for details.

Turtle

https://docs.python.org/2/library/turtle.html

Playing with Turtle:
polyFlow

The Sun totally ruined by plans!
You can't see anything....

This is what I am drawing

120 degrees

Graphical Recursion

• Graphical recursion with a single recursive call

• Fruitful recursion with turtles

• Learn about function invariance in
anticipation of multiple recursive calls

Overview

Sierpinski's Triangle

Single Recursive Call: Recursive Spirals

Recursive Spirals

sideLen

sideLen * shrinkFactor

sideLen * shrinkFactor * shrinkFactor

Function Frame Model to

Understand spiral

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(500, 90, 0.8, 250)

500sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(400, ...)

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(500, 90, 0.8, 250)

500sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(400, ...)

500

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(500, 90, 0.8, 250)

500sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(400, ...)

500

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(500, 90, 0.8, 250)

500sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(400, ...)

500

spiral(400, 90, 0.8, 250)

400sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(320, ...)

spiral(625, 90, 0.8, 250)

625sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(500, ...)

625

spiral(500, 90, 0.8, 250)

500sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(400, ...)

500

spiral(400, 90, 0.8, 250)

400sideLen

if sideLen > 250:
 fd(sideLen)
 lt(90)
 spiral(320, ...)

Invariant Spiralling

• A function is invariant relative to an objects
state if the state of the object is the same
before and after a function is invoked

Invariance

Fruitful Recursion with Turtles

See Lecture Jupyter Notebook

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

