Classes |l

Lecture Outline

e Special Methods and Operator Overloading
e QOverloading operators for the Coordinate class
 Example of user-defined types and why its the right approach

e Stars lab using classes

apparent brightness

0.150
. 0.125
y-axis .
Y= 2
s+ o (2,9) 2 0.100
o 12,5, 5
£ 0.075
-
5,2) © (S5,2) =
I:) © o 0.050
L} L L) L} |5 |||||||| s| L L) L} L 1l0 L} x_axls 0.025
5,-2 G (5,-2)
0.000
N — =l [} 8 [© © < <
+ [} © & c © Q T S n w
Q Q o =} o o s O © c
-5+ e g g ¢ T 9 O % S\
g & o & £ = - S
n] <

name

Special Methods and
Operator Overloading

Operator Overloading

* Special methods. Method names starting and
ending with __suchas __1ni1t__ and __str__ are

special. Python has other special methods that,
whenever it is appropriate, we can "‘customize.”

* When we are changing an operator or methods
default behavior, we say we are "overloading" it.

Operator Special method Purpose
+ __add___ Addition
- __sub Subtraction
* __mul Multiplication
% __mod___ Remainder
/ ___truediv Floating pt division

// __ _floordiv Integer division
== _eq Equal to
< 1t Less than
> gt Greater than
<= _le Less than or equal to

>= __ge__ Greater than or equal to

Example: Name Class

* Defining a Name class, and overloading '=', '<' and '>'

 Two names are the same if they have the same first and last
names in lower case

e One name is less than another if the first letter of last name is
appears earlier in alphabetical order

e (Greater than is opposite of less than

In [1]: class Name(object): # optional parent class
"""Class to represent a person's name."""
slots =7['f', '"m', ' 1']

def init (self, first, last, middle='"'):
self. £ = first
self. m =
self. 1 =

def eq (self, other): # both first, last name same in lower case
return (self. f.lower() == other. f.lower()) and (self. l.lower() == other. l.lower())

def 1t (self, other): # compare first letter of last name in lower case
return (self. 1[0].lower() < other. 1[0].lower())

def gt (self, other): # compare first letter of last name in lower case
return not self. 1t (other)

Operator Overloading in
Coordinate Class

llllllllllllllllllll
llllllllllllllllllll

Star Class

Why Define Own Type vs Dict

* Inlab 5, we used an in-built type (dictionary) for
storing the star data (name, brightness, distance)

* This approach has several downsides
* Each star has only three attributes known a-priori ,

e A dictionary, which is a mutable variable-
size data structure is not ideal for this

* Access to star data should be private, users (who
are plotting) should not be accidentally modity it

e (Giving user access to the dictionary which is
mutable is not safe

* @property annotation gives only read-only

access to the star name/brightness, users
cannot use it to modity the attribute

Summary

* Implementing special methods corresponding to
arithmetic and logical operators lets us tailor how
they work when applied to our user-detined objects

e Defining our own type has many benefits over using
a pre-defined types:

* greater control over access and functionality

e cleaner, modular code

apparent brightness

0.150 4
. 0.125 H
Yy-axis .
U =R x
s+ o (2.5) = 0.100 -
® ., 2
@
S 0.075 A
(5,2) S
5,2 O i)
5,23 & S 0.050 -
L L T L] -IS L) L] L] L 1 L] L I L] 5I L] T L] L 1l0 L] X_axls 0.025 |
5,-2 o (5,-2)
0.000 -
o~ — o @ S (7] © © < <
T v v S < 7] Q T S 0 w
Q Q ® o o o s O o c
-5+ o o] 2 =) z 2 S
g g O = — - S
wn wn <

name

Data Abstraction

 We will learn about how Python supports data abstraction (separating
the data and details of the implementation from the user) via :

* Data hiding: via attribute naming conventions (private, public)

Encapsulation: bundling together of data and methods that
provide an interface to the data

Data Abstraction

Data Hiding
Encapsulation

Acknowledgments

These slides have been adapted from:

o http://cs111.wellesley.edu/spring19 and

e https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

e https://www.python-course.eu/
python3_object_oriented_programming.php

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

