
Classes III

• Special Methods and Operator Overloading

• Overloading operators for the Coordinate class

• Example of user-defined types and why its the right approach

• Stars lab using classes

Lecture Outline

Special Methods and
Operator Overloading

• Special methods. Method names starting and
ending with __ such as __init__ and __str__ are
special. Python has other special methods that,
whenever it is appropriate, we can "customize."

• When we are changing an operator or methods
default behavior, we say we are "overloading" it.

Operator Overloading

Example: Name Class
• Defining a Name class, and overloading '=', '<' and '>'
• Two names are the same if they have the same first and last

names in lower case
• One name is less than another if the first letter of last name is

appears earlier in alphabetical order
• Greater than is opposite of less than

Operator Overloading in
Coordinate Class

Star Class

• In lab 5, we used an in-built type (dictionary) for
storing the star data (name, brightness, distance)

• This approach has several downsides

• Each star has only three attributes known a-priori ,

• A dictionary, which is a mutable variable-
size data structure is not ideal for this

• Access to star data should be private, users (who
are plotting) should not be accidentally modify it

• Giving user access to the dictionary which is
mutable is not safe

• @property annotation gives only read-only
access to the star name/brightness, users
cannot use it to modify the attribute

Why Define Own Type vs Dict

Summary
• Implementing special methods corresponding to

arithmetic and logical operators lets us tailor how
they work when applied to our user-defined objects

• Defining our own type has many benefits over using
a pre-defined types:

• greater control over access and functionality

• cleaner, modular code

• We will learn about how Python supports data abstraction (separating
the data and details of the implementation from the user) via :

• Data hiding: via attribute naming conventions (private, public)

• Encapsulation: bundling together of data and methods that
provide an interface to the data

Data Abstraction

Data Abstraction

Data Hiding

Encapsulation

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

• https://www.python-course.eu/
python3_object_oriented_programming.php

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

