## Classes III

#### Lecture Outline

- Special Methods and Operator Overloading
  - Overloading operators for the Coordinate class
- Example of user-defined types and why its the right approach
  - Stars lab using classes





# Special Methods and Operator Overloading

### Operator Overloading

- Special methods. Method names starting and ending with \_\_ such as \_\_init\_\_ and \_\_str\_\_ are special. Python has other special methods that, whenever it is appropriate, we can "customize."
- When we are changing an operator or methods default behavior, we say we are "overloading" it.

| Operator | Special method | Purpose                  |
|----------|----------------|--------------------------|
| +        | add            | Addition                 |
| _        | sub            | Subtraction              |
| *        | mu1            | Multiplication           |
| 8        | mod            | Remainder                |
| /        | truediv        | Floating pt division     |
| //       | floordiv       | Integer division         |
| ==       | eq             | Equal to                 |
| <        | lt             | Less than                |
| >        | gt             | Greater than             |
| <=       | le             | Less than or equal to    |
| >=       | ge             | Greater than or equal to |

#### Example: Name Class

- Defining a Name class, and overloading '=', '<' and '>'
- Two names are the same if they have the same first and last names in lower case
- One name is less than another if the first letter of last name is appears earlier in alphabetical order
- Greater than is opposite of less than

```
In [1]: class Name(object): # optional parent class
    """Class to represent a person's name."""
    __slots__ = ['_f', '_m', '_l']

def __init__(self, first, last, middle=''):
    self._f = first
    self._m = middle
    self._l = last

def __eq__(self, other): # both first, last name same in lower case
    return (self._f.lower() == other._f.lower()) and (self._l.lower() == other._l.lower())

def __lt__(self, other): # compare first letter of last name in lower case
    return (self._l[0].lower() < other._l[0].lower())

def __gt__(self, other): # compare first letter of last name in lower case
    return not self._lt__(other)</pre>
```

## Operator Overloading in Coordinate Class



## Star Class



#### Why Define Own Type vs Dict

- In lab 5, we used an in-built type (dictionary) for storing the star data (name, brightness, distance)
- This approach has several downsides
  - Each star has only three attributes known a-priori ,
    - A dictionary, which is a mutable variablesize data structure is not ideal for this
  - Access to star data should be private, users (who are plotting) should not be accidentally modify it
    - Giving user access to the dictionary which is mutable is not safe
    - @property annotation gives only read-only access to the star name/brightness, users cannot use it to modify the attribute

## Summary

- Implementing special methods corresponding to arithmetic and logical operators lets us tailor how they work when applied to our user-defined objects
- Defining our own type has many benefits over using a pre-defined types:
  - greater control over access and functionality
  - cleaner, modular code





#### Data Abstraction

- We will learn about how Python supports data abstraction (separating the data and details of the implementation from the user) via:
  - Data hiding: via attribute naming conventions (private, public)
  - Encapsulation: bundling together of data and methods that provide an interface to the data



#### Acknowledgments

These slides have been adapted from:

- http://cs111.wellesley.edu/spring19 and
- https://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-0001-introduction-to-computer-scienceand-programming-in-python-fall-2016/
- https://www.python-course.eu/
   python3\_object\_oriented\_programming.php