Classes ||

Data Abstraction

 We will learn about how Python supports data abstraction (separating
the data and details of the implementation from the user) via :

* Data hiding: via attribute naming conventions (private, public)

Encapsulation: bundling together of data and methods that
provide an interface to the data

Data Abstraction

Data Hiding
Encapsulation

Lecture Outline

Attribute types (public/private) in Python

Print representation via special method __str

Accessor methods and @property

Putting it all together: Coordinate class.

lllllllll

llllllll

1 1 |

lllllllll

llllllll

Data Hiding Via
Attribute Types

Attribute Naming Convention

Double leading underscore (__) in name (strictly
private): e.g. __val

* |nvisible from outside
e Strong you cannot touch this policy

Single leading underscore (_) in name (private):
e.g. _val

* (Can be accessed from outside, but shouldn't
“Don’t touch this unless you are subclass”
No leading underscore (public): e.g. val
Can be freely used outside class

Conventions apply to procedural attributes
(methods names) as well!

Attribute Naming Convention

In [1]: class TestingAttributes():

__slots ="' wval', ' val', 'val']

def init (self):
self. wval = "I am strictly private."
self. val = "I am private but accessible from outside."
self.val = "I am public.”

In [2]: a = TestingAttributes()

In [3]: a. val

AttributeError Traceback (most recent call last)
<ipython-input-3-3el9e2bdla2b> in
-——-> 1 a. wval

AttributeError: 'TestingAttributes' object has no attribute ' wval'

In [4]: a. val

Out[4]: 'I am private but accessible from outside.'

In [5]: a.val

Out[5]: 'I am public.'

Print Representation of an Object

In [1]: class A:
"""Test printing of objects."""
pass

In [2]: a = A()

9

By default, if we print an object, its not “pretty
In [3]: print(a)

< main__.A object at 0x111e90750>

 Special method __str__ is called when we print a class object

 We can customize how the object is printed by writinga __str__
method for our class

* We can choose how the objects of the class are printed!

Defining the __str__ method

class Coordinate(object):
__Slots__ = ["_x", '_y']
def __init__(self, x, y):

self. X = X

self._.y =y
other methods
def __str__(self):
return "<{}, {}>”.format(self._x, self._y)

>>> print(pt)
<3, 4>

For Example: Name Class

In [7]: class Name:
"""Class to represent a person's name.
_slots__ =['_£', '"'m', '_1']

def init (self, first, last, middle='"):
self. £ = first
self. m = middle
self. 1 = last

def str (self):
if len(self. m):
return '{}. {}. {}' .format(self. f[0], self. m[0], self. 1)
return '{}. {}'.format(self. f[0], self. 1)

In [8]: nl = Name(' 'Shikha', 'Singh')
n2 = Name('Iris', 'Howley', 'K.')

In [9]: print(nl)
print(n2)

S. Singh
I. K. Howley

@property

OOP Principle: Encapsulation

 Encapsulation is the bundling of data with the
methods that operate on that data

* |tis often accomplished by providing two kinds
of procedural attributes:

* methods for retrieving or accessing the
values of attributes, called getter methods or
accessor methods. Getter methods do not
change the values of attributes, they just
return the values, and

* methods used for changing the values of
attributes, called setter methods.

Accessor Methods via @property

Annotations @. Python provides a rich collection of
syntactic notes that can change how code is
Interpreted, called annotations.

These are typically prefixed with the at-sign (@).

Accessor methods do not change the state of the
calling object and are used just to retrieve some
iInformation about the object

@property annotation. Treat a procedural attribute
as a data attribute:

e |[f we'd like to treat an accessor method as-if it
were a data attribute, we can use the
@property annotation

Back to the
Coordinate Class

lllllllll

lllllllllll
llllllllllllllllllll

Euclidean Distance

Coordinate Class

* Use the class keyword to define a new type

Name of class
Parent class

class |Coordinate(object):
define attributes here
1ndented body of class definition

* the word object means Coordinate is a Python
object and inherits all its attributes
(inheritance will be covered in later lectures)

« Coordinate is a subclass of object

* object is a superclass of Coordinate

Initializing the Class: __1nit__

e Recall __1nit__ lets us initialize some data attributes of the class
* Recall __slots__ stores the data attribute names as strings in a list

e Single leading underscore signals private data or procedural attribute

Single leading underscore:

: : rivate data attributes
class Coordinate(object): g

__sSlots__ = [['_x", '_yf]
def __init__(self, x, y):
self.x = X

self.y =y

Parameter to refer to an

Can assign values to an instance instance of the class

of a class using dot notation.

Other Methods: See Notebook

class Coordinate(object):
"""Represents the coordinates of a point.
__slots__ =1["'x", ' y']
def init (self, x, y):
self. x = x
self. y =y

mmnn

@property
def x(self):
return self. x

@property
def y(self):
return self. y

def subX(self, other):
"""Subtracts the x coordinates of self
and other and returns the answer"""
return self. x - other. x

def subY(self, other):
"""Subtracts the y coordinates of self

and other and returns the answer
return self. y - other. y

def dist(self, other):
sgX = self. subX(other)**2
sqY = self. subY(other)**2
return round((sgX + sq¥)**0.5, 2)

@property

def radius(self):
"""Returns the distance of the point from (0,0)
origin = Coordinate(0,0)
return self.dist(origin)

mimnn

def str (self):

return '<{}, {}>'.format(self. x, self. y)

Acknowledgments

These slides have been adapted from:

o http://cs111.wellesley.edu/spring19 and

e https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

e https://www.python-course.eu/
python3_object_oriented_programming.php

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

