
Classes II

• We will learn about how Python supports data abstraction (separating
the data and details of the implementation from the user) via :

• Data hiding: via attribute naming conventions (private, public)

• Encapsulation: bundling together of data and methods that
provide an interface to the data

Data Abstraction

Data Abstraction

Data Hiding

Encapsulation

• Attribute types (public/private) in Python

• Print representation via special method __str__

• Accessor methods and @property

• Putting it all together: Coordinate class.

Lecture Outline

Data Hiding Via
Attribute Types

• Double leading underscore (__) in name (strictly
private): e.g. __val

• Invisible from outside

• Strong you cannot touch this policy

• Single leading underscore (_) in name (private):
e.g. _val

• Can be accessed from outside, but shouldn’t

• “Don’t touch this unless you are subclass”

• No leading underscore (public): e.g. val

• Can be freely used outside class

• Conventions apply to procedural attributes
(methods names) as well!

Attribute Naming Convention

• Class to test out different attribute conventions

Attribute Naming Convention

__str__

 
 
 
 
 

• Special method __str__ is called when we print a class object

• We can customize how the object is printed by writing a __str__
method for our class

• We can choose how the objects of the class are printed!

Print Representation of an Object

By default, if we print an object, its not “pretty”

class Coordinate(object):
 __slots__ = ['_x', '_y']
 def __init__(self, x, y):

 self._x = x
 self._y = y

 # other methods
 def __str__(self):
 return "<{}, {}>”.format(self._x, self._y)  

>>> print(pt)

<3, 4>

Defining the __str__ method

For Example: Name Class

@property

• Encapsulation is the bundling of data with the
methods that operate on that data

• It is often accomplished by providing two kinds
of procedural attributes:

• methods for retrieving or accessing the
values of attributes, called getter methods or
accessor methods. Getter methods do not
change the values of attributes, they just
return the values, and

• methods used for changing the values of
attributes, called setter methods.

OOP Principle: Encapsulation

• Annotations @. Python provides a rich collection of
syntactic notes that can change how code is
interpreted, called annotations.

• These are typically prefixed with the at-sign (@).

• Accessor methods do not change the state of the
calling object and are used just to retrieve some
information about the object

• @property annotation. Treat a procedural attribute
as a data attribute:

• If we’d like to treat an accessor method as-if it
were a data attribute, we can use the
@property annotation

Accessor Methods via @property

Back to the
Coordinate Class

Euclidean Distance

• Use the class keyword to define a new type

 

class Coordinate(object):

 # define attributes here

indented body of class definition

• the word object means Coordinate is a Python  
object and inherits all its attributes  
(inheritance will be covered in later lectures)

• Coordinate is a subclass of object

• object is a superclass of Coordinate

Coordinate Class

Name of class
Parent class

• Recall __init__ lets us initialize some data attributes of the class

• Recall __slots__ stores the data attribute names as strings in a list

• Single leading underscore signals private data or procedural attribute

class Coordinate(object):

 __slots__ = ['_x', '_y']

 def __init__(self, x, y):

 self.x = x

 self.y = y

Initializing the Class: __init__

Single leading underscore:
private data attributes

Parameter to refer to an
instance of the classCan assign values to an instance

of a class using dot notation.

Other Methods: See Notebook

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

• https://www.python-course.eu/
python3_object_oriented_programming.php

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

