
Introduction to Classes

1

Objects
• Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}

• Each of these is an object, and every object has:

• a type

• an internal data representation

• a set of functions for interaction with the object

• An object is an instance of a type

• 1234 is an instance of an int

• "hello" is an instance of a string

2

• Python is an “object-oriented” language

• Question. What is an object?

• Objects are a data abstraction that capture:

• An internal representation (through data
attributes)

• An interface for interacting with the object

• through methods (aka procedures /functions)

• defines behavior but hides implementation

EVERYTHING IN PYTHON IS AN OBJECT
(AND HAS A TYPE)

3

Example: [1,2,3,4] has type List
• Lists are represented internally by a sequence of cells connected via

pointers (called linked list)  
 
 

• This representation is private

• The user doesn’t need to know it to use list object

• How do manipulate lists? (interface through methods)

• L.append(), L.extend(), etc.

• Summary.
• Internal representation of objects  

should be private.
• Objects are manipulated through 

associated methods/ functions.
4

Creating Our Own Types: Classes
• We can create our own type by defining our own class

• Creating a class involves

• Defining the class name and its attributes

• E.g., someone wrote the code to implement a list class

• Using the class involves

• Creating new instances (objects)

• E.g., L = list()

• Doing operations on the instances

• E.g., L.append(3)

5

Defining Our Own Type: Book class

 
 
 
class Book(object):

 """This class represents a book"""

 # define attributes here

indented body of class definition

• Creating an instance of the class:

b1 = Book()

Object/instance of class Book

Name of class (convention capital first letter)

6

Optional parent class

Data Attributes or Instance Variables

• Objects have “state,” which is typically held in instance variables or
(a very Pythonic terms:) attributes.

• For example, an object of class Book may have attributes like the
name of the book and its author

• We could assign these attributes directly to an instance of the class
but we should never do this

b1 = Book()

b1.name = “Emma”

b1.author = “Jane Austen”

Attributes should typically not be be assigned outside class definition

7

Classes: Methods

8

• Think of methods as object-specific functions

• They are defined as part of the class definition and describe how to
interact with the class objects

• Example, methods for the list class

Methods or Procedural Attributes

dot operator to “call” the
method on the object

9

Our First Method
 
 
 
 
 

• How do we call the greeting?

• We create an instance of the class and call the method on that
instance using the dot operator as follows:

10

obj name dot method name

Understanding Method Calls

• The following two calls are equivalent:  

a = A()

a.greeting() # method 1

A.greeting(a) # method 2

Preferred/Standard way

11

self Parameter
• Even though method definitions have self as the first parameter (and we

use this variable inside the method body), we don’t pass this parameter
explicitly

• This is because whenever we call a method on an object, the object itself
is passed as the first parameter

• Methods are object specific-functions and this lets us access the object’s
properties via the methods directly

• In some languages this parameter is implicit but in Python it is explicit
and by convention named self

12

Summary of Methods
• A method differs from a function only in two aspects:

• It belongs to a class, and it is defined within a class

• Its purpose is to provide an interface to access/manipulate objects

• The first parameter in the definition of a method attribute is the
reference to the calling instance.

• This parameter that references the calling object is (by convention)
called “self".

13

__init__

14

• While Python allows you to assign attributes to instances of a class on the
fly (and outside the class), it is not the proper way to do so.

• You should never assign or modify attributes of an object manually

• Data attributes should be initialized as part of the class definition

• We can achieve this by the Python's special method __init__.

• __init__: Special method that lets us define how to create an
instance of a class, by initializing some data attributes

Initializing a Class: __init__

15

__slots__

16

• Attributes of objects are stored in a dictionary __dict__

• Like any other dictionary, you can add items to __dict__ on the fly
and there are no predetermined set of keys

• This is why we can dynamically add attributes to objects (even though
this is not recommended)

Avoid Dynamically Created Attributes

17

• Attributes of objects are stored in a dictionary __dict__

• Like any other dictionary, you can add items to __dict__ on the fly
and there are no predetermined set of keys

• This is why we can dynamically add attributes to objects (even though
this is not recommended)

Avoid Dynamically Created Attributes

18

• Dynamic creation and assignment of attributes is not desirable

• Slots provide a clean way to avoid this: instead of having a dynamic
dict that stores the attributes as (key, value) pairs, slots provide a static
structure which prohibits addition of attributes

__slots__

19

More Methods for  
the Book Class

20

Methods and Data Abstraction
• Methods of a class typically fall into two categories

• accessor methods (that give us ready-only access to the object’s
attributes)

• mutator methods (that let us modify the object’s attributes)

• Ideally, we do not allow the user direct access to the object’s attributes

• Instead we control access to state through methods

• This approach enforces data abstraction

• Methods provide a public interface

• Attributes are part of the private implementation

21

• We define the following methods in the class definition of Book to
provide an interface to our book objects:

• numWordsName that returns the number of words in the name of
the book

• sameAuthorAs that takes another book object as parameter
and checks if the two books have the same author or not

• yearSincePub that takes in the current year and returns the
number of years since the book was published

• Find the implementation and invocations of these methods in the
Jupyter Notebook for the lecture.

Defining More Methods

22

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

• https://www.python-course.eu/
python3_object_oriented_programming.php

Acknowledgments

23

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

