Introduction to Classes

Objects

* Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}

* Each of these is an object, and every object has:
e atype
* an internal data representation

e a set of functions for interaction with the object

* An object is an instance of a type

e 1234 is an instance of an int

« "hello" is an instance of a string

EVERYTHING IN PYTHON IS AN OBJECT
(AND HAS A TYPE)

* Python is an “object-oriented” language >>> def greeting():
print("Hello")

* Question. What is an object? |

:>>> type(greeting)
* Objects are a data abstraction that capture: <class 'function'>
>>>

* An internal representation (through data
attributes)

* An interface for interacting with the object
» through methods (aka procedures /functions)

* defines behavior but hides implementation

Example: [1,2,3,4] hastype L1st

Lists are represented internally by a sequence of cells connected via
pointers (called linked list)

This representation is private

L, =

 The user doesn't need to know it to use list object

How do manipulate lists? (interface through methods)
 L.append(), L.extend(), etc.

Summary.
e Internal representation of objects
should be private.

* Objects are manipulated through
associated methods/ functions.

4

Creating Our Own Types: Classes

* We can create our own type by defining our own class
e (Creating a class involves
* Defining the class name and its attributes
* E.g., someone wrote the code to implementa L1st class
* Using the class involves
* (Creating new instances (objects)
e Eg.,L = 1li1st()
* Doing operations on the instances

« E.g, L.append(3)

Defining Our Own Type: Book class

Name of class (convention capital first letter)

\ O
class Book : Optional parent class

This class represents a book"""
define attributes here

. # 1ndented body of class definition

* Creating an instance of the class:

bl = Book()

™S

\\;

Object/instance of class Book
6

Data Attributes or Instance Variables

* (Objects have “state,” which is typically held in instance variables or
(a very Pythonic terms:) attributes.

* For example, an object of class Book may have attributes like the
name of the book and its author

* We could assign these attributes directly to an instance of the class
but we should never do this

bl = Book()
bl.name = “Emma”
bl.author = “Jane Austen”

Attributes should typically not be be assigned outside class definition

v

Classes: Methods

Methods or Procedural Attributes

* Think of methods as object-specific functions

* They are defined as part of the class definition and describe how to
iInteract with the class objects

 Example, methods for the list class

In [1]: L = list()

In [2]: L.extend([1l,2,3])

-

In [3]: L dot operator to “call” the

method on the object
Out[3]: [1, 2, 3]

In [4]: L.append(4)

In [5]: L

out[5]: [1, 2, 3, 4]

Our First Method

In [1]: class A:
"""Class to test the use of methods
def greeting(self):
print("Hello")

* How do we call the greeting?

e \We create an instance of the class and call the method on that
instance using the dot operator as follows:

In [2]: a = A() | obj name drot method name

In [3]: a.greeting()

Hello

10

Understanding Method Calls

In [1]: class A:
"""Class to test the use of methods
def greeting(self):
print("Hello")

* The following two calls are equivalent:

a = A0 Preferred/Standard way
a.greeting()
A.greeting(a)

11

self Parameter

Even though method definitions have self as the first parameter (and we
use this variable inside the method body), we don'’t pass this parameter
explicitly

This is because whenever we call a method on an object, the object itselt
IS passed as the first parameter

Methods are object specific-functions and this lets us access the object’s
properties via the methods directly

In some languages this parameter is implicit but in Python it is explicit
and by convention named self

12

Summary of Methods

* A method differs from a function only in two aspects:
* |t belongs to a class, and it is defined within a class
 |ts purpose is to provide an interface to access/manipulate objects

e The first parameter in the definition of a method attribute is the
reference to the calling instance.

* This parameter that references the calling object is (by convention)
called “self".

13

__1nit__

Initializing a Class: __1nhit__

« While Python allows you to assign attributes to instances of a class on the
fly (and outside the class), it is not the proper way to do so.

e You should never assign or modify attributes of an object manually

e Data attributes should be initialized as part of the class definition

* We can achieve this by the Python's special method __1nit__.

« __1n1t__: Special method that lets us define how to create an
instance of a class, by initializing some data attributes

class Book:
"""This class represents a book"""
def init (self, name=None, author=None):
self.name = name
self.author = author

15

__slots__

Avoid Dynamically Created Attributes

 Attributes of objects are stored in a dictionary __dict__

* Like any other dictionary, you can add items to __dict__ on the fly
and there are no predetermined set of keys

* Thisis why we can dynamically add attributes to objects (even though
this is not recommended)

In [6]: class Book:
"""This class represents a book"""
def init (self, name=None, author=None):
self.name = name
self.author = author

In [7]: newBook = Book('Emma', 'Jane Austen')
In [8]: newBook. dict
Out[8]: {'name': 'Emma', 'author': 'Jane Austen'}

17

Avoid Dynamically Created Attributes

 Attributes of objects are stored in a dictionary __dict__

* Like any other dictionary, you can add items to __dict__ on the fly
and there are no predetermined set of keys

* Thisis why we can dynamically add attributes to objects (even though
this is not recommended)

In [7]: newBook = Book('Emma', 'Jane Austen')
In [8]: newBook. dict
Out[8]: {'name': 'Emma', 'author': 'Jane Austen'}

In [9]: newBook.year = 1815

In [10]: newBook. dict

Out[10]: {'name': 'Emma', 'author': 'Jane Austen', 'year':
18

__sSlots__

* Dynamic creation and assignment of attributes is not desirable

* Slots provide a clean way to avoid this: instead of having a dynamic
dict that stores the attributes as (key, value) pairs, slots provide a static
structure which prohibits addition of attributes

In [18]: class Book:
"""This class represents a book"""
__slots = ['name’', 'author']
def init (self, name=None, author=None):
self.name = name
self.author = author

In [20]: b = Book('Emma', 'Jane Austen')

In [21]: b.year = 1815

AttributeError Traceback (most recent call last)
<ipython-input-21-58a49885b6el> in
—-——-> 1 b.year =

AttributeError: 'Book' object ha® no attribute 'year'

More Methods for
the Book Class

Methods and Data Abstraction

Methods of a class typically tall into two categories

e accessor methods (that give us ready-only access to the object’s
attributes)

 mutator methods (that let us modify the object’s attributes)
|deally, we do not allow the user direct access to the object’s attributes
Instead we control access to state through methods
This approach enforces data abstraction
* Methods provide a public intertace

o Attributes are part of the private implementation

21

Defining More Methods

* We define the following methods in the class definition of Book to
provide an interface to our book objects:

e numWordsName that returns the number of words in the name of
the book

« sameAuthorAs that takes another book object as parameter
and checks if the two books have the same author or not

« yearSincePub that takes in the current year and returns the
number of years since the book was published

* Find the implementation and invocations of these methods in the
Jupyter Notebook for the lecture.

22

Acknowledgments

These slides have been adapted from:

* http://cs111.wellesley.edu/spring19 and

* https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-tall-2016/

e https://www.python-course.eu/
python3_object_oriented_programming.php

23

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://www.python-course.eu/python3_object_oriented_programming.php
https://www.python-course.eu/python3_object_oriented_programming.php

