
Lecture 13:  
Generators and Iterators

Check-in and Reminders
• Submit Homework 5 according to anonymous ID in box up front
• Reminder: Midterm exam on March 12 (Thursday)

• Room: TPL 203, 5.45-7.45 pm and 8-10 pm
• Closed book exam
• Practice thinking about code on paper

• Midterm review session: today
• TPL 203, 7-8.30 pm
• Come with all your questions

• This week’s lab is on plotting data
• Partner lab, due 11 pm Mon/ Tues

Do You Have Any Questions?

Review: Generator Functions
• Generator function contains one or more yield statement

• When called returns an object (iterator) but does not start execution
immediately

• When a generator function yields a value, it is paused and the control
is transferred to the caller

• Local variables and their states are remembered between successive
calls

• Finally, when the function terminates (either by reaching a return
statement or reaching the end of function body), a StopIteration is
raised automatically on further .next() calls

• Such exceptions are handled automatically if iterating over the
generator object in a for loop

Generating Infinite Sequences

Can keep going on forever!

Fibonacci Sequence
• Can use generators to generate “infinite series” in a lazy manner

• For example, the fibonacci sequence

• The fibonacci numbers form a sequence, called the Fibonacci
sequence, such that each number is the sum of the two preceding
ones, starting from 0 and 1. That is,

•

• Named after mathematician Pisa (later called Fibonacci), although it
appears in early Indian mathematical texts

• These sequences occur in nature (such as  
the arrangement of leaves on a steam),  
the flowering of an artichoke, etc

Fn

F0 = 0, F1 = 1, and Fn = Fn−2 + Fn−2 for all n ≥ 2.

Generator Function for Fibonacci
• Lets write a generator function that  

yields the next fibonacci number  
in the sequence when called

Optional parameters (by default first
parameter a is 0, second b is 1)

Fibonacci sequence on demand

Iterators
• All sequences in Python are iterable, they can be iterated over

• Examples, strings, lists, ranges, tuples, even files

• A Python object is iterable if it supports the iter function—that is, it
has the special method __iter__ defined—and returns an iterator

• An iterator is something that

• supports the next function (that is, the special method
__next__ is defined and can be called to access the next item)

• throws a StopIteration when the iterator “has run dry”

• returns itself under an iter call

• Iterations may be defined using class (with special methods __iter__
and __next__ implemented)

• Generators provide an easy way to define iterators in Python!

Generator Iterators
• One can iterate across an object obj using an iterator

• You can ask an object obj for its iterator with it = iter(obj)

• An iterator generates values in the sequence by its next() method  
 
 
 

• A generators can be used to implement our own iterator objects

• If genObj is a generator, then iter(genObj) is genObj

• The yield statement produce the next values of the iterator  

• Question. How can we iterate implicitly (without calls to next)?

Generator as Iterators

For loop: Behind the Scenes
• A for loop iterates across some object obj. For example:

a simple for loop to iterate over a list
for item in numList:

 print(item)

• The for loop is simply a while loop in disguise, driving an iteration within
a try-except statement. The above loop is really:

try:
 it = iter(numList)
 while(True):
 item = next(it)

 print(item)
except StopIteration:
 pass

Call the iter method on object to get an iterator.
Recall that if g is genetor then iter(g) is just g

access the next item if it exists, then print it

What try-except does
• The try/except statement has the following form:

try:
 <possibly faulty suite>

except <error>:

 <cleanup suite>  

• The <possibly faulty suite> is a collection of statements that
has the potential to fail, with error. If occurs, the of statements is
executed

• You can have more than one except, handling different types of errors

Generator Expressions
• Similar to list comprehensions, we can write generator functions with

concise expressions

• For example, below is a generator expression to generate all squares
from 1 to 10. Look how concise it is! 

>>> genExp = (i*i for i in range (1, 10))

>>> next(genExp)

1

>>> next(genExp)

4

>>> next(genExp)

9

Recall: Random Module
• We used the random module in Python to generate random integers in

Lecture 9

• Here we review how to generate random integers in Python

>>> import random

>>> lo = 0, hi = 31

>>> randomIndex = random.randint(lo, hi) # generates
a random integer between lo and hi (both inclusive)

>>> randomIndex # try the above a bunch of times!

5

https://williams-cs.github.io/cs134-s20-www/shikha-lectures/lec_listPatterns_files_solns.html

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

