
Lecture 12: Generators

Check-in and Reminders
• Pick up graded Homework 4 from box up front
• Reminder: Midterm exam on March 12 (Thursday)

• Room: TPL 203, 5.45-7.45 pm and 8-10 pm
• Closed book exam
• Practice thinking about code on paper

• Midterm review session: Monday, March 9
• TPL 203, 7-8.30 pm
• Come with all your questions

• Next week’s lab (on plotting data) will also be partnered
• It will be short and due the day off

Do You Have Any Questions?

• Functions taken in some input and return some output
• Parameters of a functions are “holes” in the body of the function,

that are filled in with the argument value for each invocation
• A particular. name for a parameter is irrelevant, as long, as we use

it consistently within the body

Review: Functions

def square(x):

return x*x

def square(num):

return num*num

def square(apple):

return apple*apple

Review: Function Call Model
• Function frame. Model to understanding how a function call works

square (2+3) square (5)

5

square frame

x

return x * x

5

square frame

x

return 5 * 5

5

square frame

x

return 25

25

Return value replaces the function call

Review: Return Statement
• When a function returns a value, where does it “end up”?

• Can a function have multiple return statements?
• How many of them will ever be reached during a particular

invocation of the function?

• What happens to the “control flow” of a program when we hit a
return statement inside a function frame (invocation of a function)

• Is any code after a return that is reached executed?
• What happens to the the function frame (the state of the local

variables inside it) after we hit return?

• How can a function return a sequence of multiple values?
• Is any information that was computed within a function, that is not

returned, remembered?

Recall: Variable Scope
• Local variables. An assignment to a variable within a

function definition creates/changes a local variable
• Local variables exist only within a functions body, and cannot

be referred outside of it
• Parameters are also local variables that are assigned a

value when the function is invoked

def square(num):

return num*num

In [1] square (5)
Out [1] 25
In [2] num
NameError: name ‘num’ is not defined

Recall: Variable Scope
def myfunc (val):

val = val + 1
print('val = ', val)
return val

val = 3
newVal = myfunc(val)

Global scope

myfunc
Some
code

val 3

newVal

Recall: Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

print(`val =`, val)

return val

myfunc
Some
code

val 3

newVal eww

Recall: Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal eww

Recall: Variable Scope
def myfunc (val):

val = val + 1
print(`val =`, val)
return val

val = 3
newVal = myfunc(val)

Global scope

3

myfunc frame

val

val = val + 1

4

print(`val =`, val)

return val 4

myfunc
Some
code

val 3

newVal 4

Information flow out of a function is only through return statements !

Function frame destroyed
(and all local variables lost)

after return from call

>>> g = genF(10)
>>> g
<generator object genF at 0x10a55ac50>
>>> next(g)
10
>>> next(g)
 File "<stdin>", line 1, in <module>
StopIteration

New Type of Functions with Yield
• A function that has a yield statement in it is called a generator

function

• yield statement completely changes the behavior of the function

Invoking a generator function
creates a generator object

Invoking a regular (non-generator)
function returns the output

def simpleF(num):

 return num

def genF(num):

 yield num

>>> f = simpleF(10)
>>> f
10

A generator function A “normal” function

Generator Functions
• genF does nothing other than yield the value that is passed as an

argument. Invoking it like a “normal” function does not produce a
returned value but results in a generator object

• If we call the next() method on the generator object g, it “yields” or
“produces” a value. After it, the generator g is exhausted

def simpleF(num):

 return num

def genF(num):

 yield num

>>> f = simpleF(10)
>>> f
10

>>> g = genF(10)
>>> g
<generator object genF at 0x10a55ac50>
>>> next(g)
10
>>> next(g)
 File "<stdin>", line 1, in <module>
StopIteration

A generator function A “normal” function

Calling next on it again throws a
StopIteration exception

Understanding Yield
• If a yield exp statement is reached, the function’s state is frozen,

and the value of the expression exp is returned to the .next() call

• That is, all local state of variables is retained, and then function
execution is “resumed” when .next() is invoked again, and the
control flow proceeds exactly where it left off

• A function can contain multiple yield (along with return) statements  
 
 

• Similarity. Both yield and return will return some value from a
function to the caller

• Difference: while a return statement terminates the function entirely,
the yield statement pauses the function (saving all its state) and later
continues from there on successive calls

Yield vs Return

Mechanics of Generator Functions
• Generator function contains one or more yield statement

• When called returns an object (iterator) but does not start execution
immediately

• When a generator function yields a value, it is paused and the control
is transferred to the caller

• Local variables and their states are remembered between successive
calls

• Finally, when the function terminates (either by reaching a return
statement or reaching the end of function body), a StopIteration is
raised automatically on further .next() calls

• Such exceptions are handled automatically if iterating over the
generator object in a for loop

Generator Functions: Examples

Creates and calls next()on new
generator object!

CountTo(n) : Three Versions!

Generating Infinite Sequences

Can keep going on forever!

Fibonacci Sequence
• Can use generators to generate “infinite series” in a lazy manner

• For example, the fibonacci sequence

• The fibonacci numbers form a sequence, called the Fibonacci
sequence, such that each number is the sum of the two preceding
ones, starting from 0 and 1. That is,

•

• Named after mathematician Pisa (later called Fibonacci), although it
appears in early Indian mathematical texts

• These sequences occur in nature (such as  
the arrangement of leaves on a steam),  
the flowering of an artichoke, etc

Fn

F0 = 0, F1 = 1, and Fn = Fn−2 + Fn−2 for all n ≥ 2.

Generator Function for Fibonacci
• Lets write a generator function that  

yields the next fibonacci number  
in the sequence when called

Optional parameters (by default first
parameter a is 0, second b is 1)

Fibonacci sequence on demand

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

