
Lecture 10:
Dictionaries and Sets

Check-in and Reminders
• Submit Homework 3 in the box up front

• Remember that this week’s lab is partnered

• Partner must be in the same lab section

• If you have not found a partner yet, check out the shared google
doc to find students who are also looking  

• Heads up. Midterm is Thursday, March 12

• Closed book exam

• Review homework and lectures: best practice for exams

• Exact Syllabus will be announced Wed

Do You Have Any Questions?

Sequence vs Collection
• Sequence: a group of items that come one after the other (there

is an ordering of items)
• Collection: a group of things brought together for some purpose 
 
 
 
 
 
 
 
 
 

• Is a sequence a collection? Is a collection a sequence?

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Python Collections
• A sequence is an ordered collection in which elements can be

accessed by their index.

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Properties of Sequences & Collections
• Collections (list, tuple, string, range, set, dict)

• Find their length with len()

• Check element membership in the collection with in
• Are iterables (we can iterate over their elements in a loop)

• Sequences (list, tuple, string, range)

• Use indices to access elements, e.g., myList[2]

• Use slice operations for subsequences, e.g, myList[2:4]
• Mutable (list, set, dict): can be changed through object methods
• Immutable (tuple, string, range): cannot be changed

A New Mutable Collection: Sets

Image Source: (http://cs111.wellesley.edu/spring19)

• Sets are written as comma separated values between curly braces

nums = {42, 17, 8, 57, 23}
animals = {'duck', 'cat', 'bunny', 'ant'}
potters = {('Ron', 'Weasley'), ('Luna', 'Lovegood'),
('Harry', 'Potter')}
vowels = {} # empty set

• The values in a set must be immutable objects, just like keys in a
dictionary.

• So sets cannot include as values lists, dictionaries, or even sets

http://cs111.wellesley.edu/spring19

Properties of Sets

Image Source: (http://cs111.wellesley.edu/spring19)

• Elements of sets are unordered. When a set is printed, the order of
elements in unpredictable
• Jupyter notebooks, however, show returned set elements in

ascending order even though they are fundamentally unordered
• Sets contain no duplicates. An element is either contained in a set

or not. An element cannot appear more than once in a set
• Sets are thus an effective way of removing duplicates!

In [11] listWithDups = [4, 1, 3, 2, 3, 4, 1]
In [12] set(listWithDups)
Out [12] {1, 2, 3, 4}
In [13] list(set(listWithDups))
Out [13] [1, 2, 3, 4]

http://cs111.wellesley.edu/spring19

Dictionaries
• A dictionary is a mutable collection that maps keys to values
• A dictionary is enclosed with curly brackets and contains comma-

separated pairs. A pair is a colon-separated key and value.

daysOfMonth = {'Jan' : 31, 'Feb' : 28, 'Mar' : 31,… }  
 
 
monthsLength = {
31: ['Jan','Mar','May','Jul','Aug','Oct','Dec'],
30: ['Apr', 'Jun','Sep','Nov'],
28: [Feb] }
• Keys: an immutable type such as numbers, strings, or tuples
• Values: any Python object (numbers, strings, lists, tuples, etc.)

key value

Creating Dictionaries
• Direct assignment: provide keys, value pairs delimited with {}
In [1] scrabbleDict = {'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1,
'f': 4, 'g': 2, 'h': 4, 'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3,
'n': 1, 'o': 1, 'p': 3, 'q': 10, 'r': 1, 's': 1, 't': 1, 'u':
1, 'v': 4, 'w': 4, 'x': 8, 'y': 4, 'z': 10}

• Start with empty dict and add key, value pairs
In [2] cart = {} # an empty dict
In [3] cart['oreos'] = 3.99
In [4] cart['kiwis'] = 2.54
In [5] cart
Out [5] {'kiwis': 2.54, 'oreos': 3.99}

• Applying the built-in constructor function dict to a list of tuples:
In [6] dict([('Harry', 12), ('Hagrid', 40)]
Out [6] {'Harry': 12, 'Hagrid': 40}

Note. keys may be
listed in any order

Dictionary Operations
• The value associated with a key is accessed using the same

subscripting notation with square brackets used for list indexing

In [1] daysOfMonth = {'Jan' : 31, 'Feb' : 28, 'Mar' :
31,… }
In [2] daysOfMonth['Oct']
Out [2] 31
In [3] scrabbleDict['z']
Out [3] 10
 

Check Key Exists with in Operator
• Before accessing a dictionary with a key, you should check if the

key exists using the in operation  

In [4] daysOfMonth['October']

KeyError Traceback (most recent call last) in () ---->
1 daysOfMonth['October'] KeyError: 'October'
In [5] 'Oct' in daysOfMonth
Out [5] True
In [6] 'October' in daysOfMonth
Out [6] False  

Dictionaries and Mutability

• We can add or remove key-value pairs
• We can change the value of an existing key  

In [7] daysOfMonth['Feb'] = 29
 

• Example, a list or dict cannot be a key of a dictionary (only immutable
objects such as numbers, strings, tuples) can be keys

Dictionaries are mutable

Dictionary Keys are Immutable

Dictionary Methods: get

Image Source: (http://cs111.wellesley.edu/spring19)

• The get method is an alternative to using subscript to get the value
associated with a key in a dictionary. It takes two arguments:

• the key
• an optional default value to use if the key is not in the dictionary

In [8] daysOfMonth.get('Oct', 'unknown')
Out [8] 31
In [9] daysOfMonth.get('OCT', 'unknown')
Out [9] 'unknown'
• If the optional second argument is omitted and the key does not exists,

get will return None.

In [10] print(daysOfMonth.get('OCT'))
Out [10] None

http://cs111.wellesley.edu/spring19

Dictionary Methods: keys, values, items

Image Source: (http://cs111.wellesley.edu/spring19)

• Sometimes we are interested in knowing the keys, values or items
(key, value pairs) of a dictionary.

• Each of these methods returns an object containing only the keys,
values, and items, respectively.

http://cs111.wellesley.edu/spring19

Iterating over/membership in Dicts

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Summary of Dictionary Methods

Image Source: (http://cs111.wellesley.edu/spring19)

http://cs111.wellesley.edu/spring19

Set Methods Summary
• s.add(item): changes the set s by adding item to it

• s.remove(item): changes the set s by removing item from s. If
item is not in s, a KeyError occurs

The following operations return a new set.

• s1.union(s2) or s1 | s2: returns a new set that has all
elements that are either in s1 or s2

• s1.intersection(s2) or s1 & s2: returns a new set that has all
the elements that are in both sets.

• s1.difference(s2) or s1 - s2: returns a new set that has all
the elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that
mutate s1 to become the result of the operation on the two sets.

Heads Up for Lab: Assert
• Python’s assert statement is a debugging aid that tests a

condition.
• If the condition is true, it does nothing and your program just

continues to execute.

• But if the assert condition evaluates to false, it raises
an AssertionError exception with an optional error message

• Assertions are internal self-checks for your program  
 
 

• exp1 is the condition we test, and the optional exp2 is an error
message that’s displayed if the assertion fails.

assertStatement = “assert” exp1 [“,” exp2]

• A word or phrase that has no repeated letter (no duplicates!)  
 

>>> isogram('ambidextrously')

True

>>> isogram('DOCTORWHO')

False

>>> isogram('uncopyrightable')

True

Heads Up for Lab: Isograms

These slides have been adapted from:
• http://cs111.wellesley.edu/spring19 and

• https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-0001-introduction-to-computer-science-
and-programming-in-python-fall-2016/

Acknowledgments

http://cs111.wellesley.edu/spring19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

