
Computer Science CS134 (Spring 2020)

Shikha Singh & Iris Howley

Laboratory 7

Setting Precedent in the Supreme Court (due Thursday April 16 at 11pm EST)

Objective. Creating and using a class.

Lab overview video. The following videos provide an overview to this lab assignment:

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?pid=556f2a40-62d4-4d7d-8b50-ab960141af3c.

This week, we'll look at one of the most carefully curated social networks|the network of Supreme

Court majority decisions. In this network, the majority decision of a case is founded in the law by citing

past decisions. Past decisions establish precedent by being cited by later cases.

A similar network is the network of academic publications. Publications cite prior work to establish

legitimacy, and older publications become inuential when they're cited by future work.

In academic circles, an author's inuence can be estimated by academic impact scores . In this lab

we'll attempt to apply academic impact scores to dockets of Supreme Court decisions.1

Background: The h-Index. A commonly used metric for determining the impact of authors is the

h-index . The index is computed by counting the number of times each of the author's papers have been

cited. Suppose Rita DeCoder has has written ten papers. Her list of citation counts might look something

like this: (0, 2, 15, 9, 7, 48, 4, 82, 14, 6). In particular, Rita's �rst paper has been cited zero

times, her second paper has been cited twice, etc. Rita's h-index is the maximum n where her top n

papers have been cited at least n times . Looking at Rita's citation counts we see that her top 6 papers

have been cited at least 6 times.

The process is more obvious when you sort the citation count list in descending order:

(82, 48, 15, 14, 9, 7, 6, 3, 2, 0). It's easy to see that the �rst six elements are greater than

or equal to 6, but the 7th is less than 7. We'll leave it to you to determine the relationship between the

values of the list and their list indices . Authors with a high h-index have written many highly-cited

papers and, over time, their impact score may improve as more and more people cite their works.

Getting Started. As usual, you should clone the starter repository for this week's lab, similar to

the process you followed for last week's Lab06 Remote Set-up lab. We typically do this by going to

https://evolene.cs.williams.edu and clicking Clone and selecting the Copy URL to clipboard but-

ton under the Clone with HTTPS text. Return to the Terminal, navigate to your cs134 directory, and

type git clone followed by the URL you just copied, followed by the name of the lab, e.g.:

git clone https://evolene.cs.williams.edu/cs134-s20/lab07/22xyz3.git lab07/

where your CS username replaces 22xyz3. We hope to plot data, so you will need to install matplotlib,

click on this link for instructions on how to install it.

You will the �nd the �le, scotus.py, along with several CSV �les in the lab folder. The primary CSV

�le we will be using is decisions.csv. This �le contains data that has been collected from Fowler and

Jeon's interesting analysis of the 30,288 majority US Supreme Court decisions on dockets through 2002.2

1Thanks to Peter Tianlun Zhang for performing this initial research and to Carl Rustad helping develop this lab.
2J. H. Fowler, S. Jeon, \The authority of Supreme Court precedent", Social Networks , 30(1), January 2008, pp. 16-30.

See also fowler.ucsd.edu/judicial.htm. The raw data used for their work is in judicial.csv.

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?pid=556f2a40-62d4-4d7d-8b50-ab960141af3c
https://docs.google.com/document/d/13TTa6yXPYSGwDqZGZoJ8Ru5bLoCecsFRs1Zxn-0C5yA/edit?usp=sharing


Each row in this �le corresponds to an annual docket of Supreme Court decisions. The �rst item

on each line is the year the decisions were made, which is followed by a sequence of citation counts

of cases heard during that year (in the order they were heard by the court). For example, line 18:

1784,1,0,1,0,0,0,0,0,1,0 represents the docket of cases heard by the Supreme Court in the year 1784

during which the �rst, third and ninth were cited once, while the rest were cited zero times.

This week’s tasks. Before we get to the main tasks for this week, we need you to do a one-time git

config setup on your personal machines.

Task 0. git config setup. Execute the following commands (if you have not done so already) in the

Terminal/Command Prompt application. They will ensure that your git commits and pushes have your

user name and email associated with it.

git config --global user.name "22xyz3"

git config --global user.email "xyz@williams.edu"

where your CS username replaces 22xyz3 and the email is your Williams email.

In the �le scotus.py, you will �nd an incomplete de�nition of a class, ScotusDocket. The objects of

this class represent a docket of the US Supreme Court cases with two private attributes: _label (which

can refer to a particular year as int or the name of a Chief Justice as str) and _citations (sequence of

integer citation counts for that year or Justice as a tuple). First, we will implement several methods for

this class, and then use the ScotusDocket objects to read in and analyze the decisions data.

Task 1. Implementing methods. Complete these method de�nitions in the ScotusDocket class:

(a) __init__(self, label=None, citations=(0,)). This method is invoked when we create an object

of the class ScotusDocket and initializes the object's attributes _label and _citations with the

arguments label and citations passed as arguments during the creation. The default label is set

to None and the default citation sequence is the singleton-tuple (0,).

(b) label(self). This is a public accessor/getter method which when invoked returns the calling

object's _label attribute. Notice the @property annotation preceding the method de�nition. This

ensures that we can invoke the method as if it is a data attribute, e.g.:

>>> d1 = ScotusDocket(1600, (1, 2, 3))

>>> d1.label

1600

>>> ScotusDocket('R.G.B', (0, 2, 15, 9, 7, 48, 4, 82, 14, 6)).label

'R.G.B'

(c) citations(self). This is a public accessor/getter method which when invoked returns the calling

object's _citations attribute. Notice the @property annotation preceding the method de�nition.

>>> ScotusDocket('John Jay', (4, 82, 14, 6)).citations

(4, 82, 14, 6)

>>> ScotusDocket(1754, (0,)).citations

(0,)



(d) _hIndex(self). This private method when invoked returns the h-Index of the calling object's

citation counts. Review the Background: The h-Index section to learn more about hIndex and

how to compute it. Here are some important examples describing how this method behaves:

>>> d1 = ScotusDocket(1600, () )

>>> d1._hIndex()

0

>>> ScotusDocket(1762, (0, 0))._hIndex()

0

>>> ScotusDocket(1800, (1, 2, 3))._hIndex()

2

>>> ScotusDocket('Earl Warren', (0, 2, 15, 9, 7, 48, 4, 82, 14, 6))._hIndex()

6

(e) impact(self). This is a public accessor/getter method which when invoked returns the calling

object's h-Index. This method is also annotated with a @property. (Hint. Don't overthink it, use

the private method _hIndex.)

>>> ScotusDocket(1800, (1, 2, 3)).impact

2

>>> ScotusDocket(1913, (0, 2, 15, 9, 7, 48, 4, 82, 14, 6)).impact

6

Task 2. Instantiating the class.

For this task, implement the function readDecisions(filename='decisions.csv') which takes the

name of the decisions CSV �le, reads in the �le line-by-line and for each line, it creates a docket object

(of the class ScotusDocket) where the attribute label is the year as an int, and the attribute citations

is the corresponding citation sequence in the �le as a tuple of ints. The function must accumulate these

objects in a list, docketList, and return it.

Task 3. Plotting the impacts.

For this task, implement the procedure plotImpacts(docketList, plotfilename) which takes as input

a list of docket objects and the name of the plot as a string. The procedure must plot the dockets (h-index

vs year) in chronological order using line-style plotting to suggest trends.

To arrange the docket objects in chronological order (in ascending order by year), use sorting with

lambda leveraging the label method. If the variable years is the list of years in chronological order and h

is the list of corresponding impact scores (h indices), we can plot them as a line-plot using the command

plt.plot(years, h, 'b-'), where the matplotlib.pyplot module has been imported as plt.

Remember to save the plot with the �lename plotfilename. When plotted correctly, the trend looks

like the plot in Figure 1.

Submitting your work. When you're �nished, stage, commit, and push your work to the server as you

did in previous labs. Remember that you must certify that your work is your own, by typing out the

Honor Code statement in the honorcode.txt �le, committing and pushing it along with your work.



1750 1800 1850 1900 1950 2000
Year

0

5

10

15

20

25

30

H-
In

de
x

H-Index by Year

Figure 1: Plotting impact of Supreme Court dockets by year.

Late days. You are allowed a total of 3 late days over the semester, with at most 2 late days towards

any one lab. You must request a late day in advance on the form, here: http://bit.ly/s20late.

Grading Guidelines. Both functionality and programming style are important when writing code, just

as both the content and the writing style are important when writing an essay. In this program, some of

the speci�c functional requirements we will test for include:

� Your class de�nition must pass all the provided doctests. You do not need to create doctests of your

own, but you can if you like.

� You must stage, commit, and push the plot lab7.pdf generated by the following code in the

if __name__ == '__main__': block:

dl = readDecisions()

plotImpacts(dl, 'lab7.pdf')

� Just like previous labs, we require that the functions de�ned in scotus.py follow our speci�cations. Do

not modify the function names, their parameters, nor what is returned. The examples above in This

week’s tasks provide details about these constraints.

Stylistically, we expect to see programs that exhibit the following: meaningful names used in decla-

rations, informative comments, good and consistent formatting, and good choice of Python commands.

There is some subjectivity to what makes good style, but the basic goal is to make your ideas as clear and

easy to follow as possible.

Grading scale. Programming labs will be graded on the following scale:

http://bit.ly/s20late


A+ A submission that exceeds our standard expectations for the assignment. The program must reect

additional work beyond the requirements or get the job done in a particularly elegant way.

A A submission that satis�es all the requirements for the assignment|a job well done.

A- Submission meets the requirements for the assignment, possibly with a few small problems.

B A submission that has problems serious enough to fall short of the requirements for the assignment.

C A submission that has extremely serious problems, but nonetheless shows some e�ort & understanding.

D A submission that shows little e�ort and does not represent passing work.

Extra credit—expand your knowledge. If you'd like to push this analysis a little bit further, consider

the �le chiefJustices.csv, in which we have listed all the chief justices along with the start and end

year of each justice's term.

Determining impacts of specific courts. Because these powerful US Supreme Court Chief Justices

determine the cases to be heard, they often determine the \personality" of the court. Thus, for example, the

Rehnquist Court was a conservative court that spanned the years 1986 through 2005. For the purposes of

this assignment, let's consider a majority decision to be part of a particular justice's court if it was decided

in a year of their term.

Write a Python procedure, courtInfluence(docketList) that takes as input docketList which is

the list of docket objects returned by the readDecisions method. The method reads the terms of each

chief justice from the �le chiefJustices.csv, accumulations a sequence of citation counts for each justice

that spans their entire term3 and computes the impact of each of their court's decisions based on the

citation sequence over their term. You may write helper functions to read in the chiefJustices.csv �le.

Note that the �rst line in chiefJustices.csv is a header row and you must handle it separately. You can

either do this using code or by deleting the line manually from the �le. The procedure should sort and

print the names of the courts and their h-index in decreasing order of impact.

Hint. For this part of the lab, _label attribute of objects of the class Scotus Docket correspond to a

Chief Justice's name rather than a particular year.

?

3In particular, if a Chief Justice's term spanned from year x to year y, their citation sequence is a concatenation of citation

sequences of all years j, x ≤ j ≤ y.


