
Computer Science CS134 (Spring 2020)

Shikha Singh & Iris Howley

Laboratory 2

Computing the Age of the Moon

Objective. To construct a script that computes something non-trivial.

This week we'd like you to implement an algorithm to compute the phase of the moon as a python

script. Like our day-of-the-week algorithm, this algorithm is simple enough so you could compute the age

in your head, but complex enough so that you'd be motivated to have it available as a python function.

Method. We'll be implementing a method for determining the moon's age suitable for mental calculation.

Like the day-of-week calculation, this method is due to John Conway.

Let's assume that you have a date, speci�ed as a valid month, day, and year. For purposes of practicality,

we'll limit the year to those in the range 1900 to 2099. Let's assume the month is speci�ed as a value

between 1 and 12 and the day is a value between 1 and 31. This algorithm computes the moon's age in

days, a value between 0 and 29; when the age is zero, the moon is new, when it's 15, it's full.

The algorithm involves keeping a running sum, rsum, modulo 30.

1. Initialize the sum, rsum, to the sum of the day, the month, and 30. The �nal 30 is helpful to avoid

negative modular arithmetic, later.

2. If the two leading digits of the year, the \century digits," are 20, subtract 8 from rsum, otherwise

subtract 4 from rsum. Be sure to treat the digits as numbers, without converting to/from strings!

3. Compute the value of the year within the century, yy, which would be a value between 0 and 99.

Then, compute the distance of yy to the closest multiple of 19|lets call this value dist. For example,

2018 yields -1, but 1999 gives +4. (Notice that 2000 gives 0, but the century correction avoids a

discontinuity here.) This calculation is challenging to think about. Be careful to check your work!

4. To dist \prepend" a ten's digit that is the value of |dist| mod 3.1 Thus 2014, whose distance is

-5, will have a �nal dist of -25, 1999 generates 14, and 2000 gives 0. Notice that this part of the

computation never changes during the year. The �nal value of dist for 2018 is -11.

5. Add dist to rsum and compute the remainder, when divided by 30. That's the age of the moon!

Here are some examples you might use to verify your calculations:

� Moon Unit Zappa was born September 28, 1967. Think: (9+ 28+ 30− 4− 9)mod 30 ≡ 24

� Tally, the moon-colored dog, was born on August 28, 2017.

She calculates: (8+ 28+ 30− 8− 22)mod 30 ≡ 6

� Pixel, the moon-howling pup, was born on May 16, 2018: (5+ 16+ 30− 8− 11)mod 30 ≡ 2

1|x| stands for the absolute value of x, which is de�ned as x if x ≥ 0 and −x if x < 0. It is handy that Python has an

in-built abs() function that computes the absolute value of a number.

This week’s tasks. Clone the starter repository for this week's lab into your cs134 directory as you did

last week, by going to https://evolene.cs.williams.edu and clicking Clone and the the Copy URL to

clipboard button under the Clone with HTTPS text. This copies the URL of the git repository for this

lab. Return to the Terminal application and type git clone followed by the URL of the lab project you

just copied (you can paste on Mac by pressing Command-V) followed by the name of the lab lab02. Your

line should look something like this:

git clone https://evolene.cs.williams.edu/cs134-s20/lab02/22xyz3.git ~/cs134/lab02/

where your CS username replaces 22xyz3.

Your job is to write, in a �le called phase.py, a function, moonAge(month,day,year), that computes the

age of the moon associated with the date speci�ed by month, day, and year.

You can exercise your moonAge function, by writing a main function that takes in user input, e.g.:

def main():

month = int(input("Month? "))

day = int(input("Day? "))

year = int(input("Year (yyyy)? "))

age = moonAge(month,day,year)

print("On ",month,"/",day,"/",year," the moon's age is ",age,".", sep = '')

When your script is complete, you should be able to type:

-> python3 phase.py

Month? 9

Day? 17

Year (yyyy)? 2018

On 9/17/2018 the moon's age is 7.

You should also be able to test your code interactively with

-> python3

>>> from phase import moonAge

>>> moonAge(9,17,2018)

7

>>>

Be sure to understand the di�erence between excercising code in a script and testing functions interactively.

Submitting your work. When you're �nished with phase.py, stage, commit, and push your work to

the server as you did in Lab 1. Remember that you must certify that your work is your own, by typing out

the Honor Code statement in the honorcode.txt �le, committing and pushing it along with your work.

Late days. You are allowed a total of 3 late days over the semester, with at most 2 late days towards

any one lab. You must request a late day in advance on the form, here: http://bit.ly/s20late.

Working across di�erent machines. If you clone the lab repository on two di�erent machines and

are planning to switch between them, you must always start by \pulling" your most recent work from the

server to the local machine. You can do this by adding the correct project folder to Atom, toggling the

Git tab, and clicking on the Fetch button at the bottom right of the Git tab.

Grading Guidelines. Both functionality and programming style are important when writing code, just

as both the content and the writing style are important when writing an essay. In this program, some of

the speci�c functional requirements we will test for include a correct implementation of:

� Steps 1-5 (without the use of strings)

� main function that asks user input (month, day, year), invokes moonAge function and prints the output

� moonAge(month, day, year) with 3 parameters that returns the age of the moon as an int.

Stylistically, we expect to see programs that exhibit the following: meaningful names used in declarations,

informative comments, good and consistent formatting, and good choice of Python commands. There is

some subjectivity to what makes good style, but the basic goal is to make your ideas as clear and easy to

follow as possible.

Grading scale. Programming labs will be graded on the following scale:

A+: An absolutely fantastic submission of the sort that will only come along a few times during the

semester.

A: A submission that exceeds our standard expectations for the assignment. The program must re
ect

additional work beyond the requirements or get the job done in a particularly elegant way.

A-: A submission that satis�es all the requirements for the assignment { a job well done.

B+: Submission meets the requirements for the assignment, possibly with a few small problems.

B: A submission that has problems serious enough to fall short of the requirements for the assignment.

C: A submission that has extremely serious problems, but nonetheless shows some e�ort and under-

standing.

D: A submission that shows little e�ort and does not represent passing work.

Extra credit—One way to dig deeper. Consider reporting the western description of the moon's age:

age description

0,1,29 new

2,3,4,5,6 waxing crescent

7,8 �rst quarter

9,10,11,12,13 waxing gibbous

14,15,16 full

17,18,19,20,21 waning gibbous

22,23, third quarter

24,25,26,27,28 waning crescent

Your program should report the moon's age together with its description, for example:

-> python3 phase.py

Month? 9

Day? 18

Year (yyyy)? 2018

On 9/18/2018 the moon's age is 8, a first quarter moon.

It is possible, though not necessary for this problem, to determine the moon's description by using a small

number of strings and without using any if statements! You may also �nd that using lists are helpful,

though we haven't yet covered them in class.

?

