
Python	Activity	45:	Trees	

Name:	_______________________________________	 	 Partner:	 ________________________________	
Python	Activity	45:	Trees	

Conceptual Model:
Twenty Questions is a game in which a "Knower" thinks of a noun, and the "Guesser(s)" have to guess
the word the Knower is thinking of by asking fewer than 20 yes/no questions. Here is a sample dialogue
of one such instance of the game:

Knower: Let's play Twenty Questions. I have a noun in mind.
Guesser: Is it alive?
Knower: No.
Guesser: Is it food?
Knower: Yes.
Guesser: Is it sweet?
Knower: No.
Guesser: Is it a pretzel?
Knower: Yes, you win!

a. How many questions does the Guesser ask? _______________

b. What is the Guesser's first question? ___

c. What is the Guesser's last question? ___

d. How is a question distinguishable from a guess?

e. How many guesses and how many questions are asked in this single game?

Guesses: _______________________ Questions: _____________________________

Learning Objectives
Students will be able to:
Content:
• Define a tree
• Identify the root and leaf of a tree
• Explain the meaning of a tree’s __slots__
• Explain how a tree data structure represents a 20 Questions game
Process:
• Write code that adds nodes to a tree

• Write code that iterates through the tree’s values.
Prior Knowledge
• Python concepts from Activities 1-19, Linked Lists, Recursion

Critical Thinking Questions:

1. Examine the diagram below, it represents several rounds of playing Twenty Questions.
Twenty Questions

a. How many possible answers does each question have? _________________

b. On what side of the questions do “yes” responses appear? _________________

c. If this diagram represents 3 games of 20 Questions, what is the first question asked?

d. There are three final guesses represented in the diagram, what are they?

e. What physical object does the data structure in the diagram resemble? (This could be its

own game of Twenty Questions!)

f. There are three leafs in the above Twenty Questions diagram. Which questions are they?

2. The following code creates the topmost sub-tree of the Twenty Questions tree diagram:

a. What does the first parameter of a new Tree instance represent?

b. What does the second parameter of a new Tree instance represent?

FYI: Trees are data structures that simulate a hierarchical tree structure, represented as a set of linked
Tree nodes.

FYI: A leaf is a node of the tree that has no children. A root is the top node of the tree that points to
other nodes (children), but none of these child nodes point to the root.

t2 = Tree('Does it have 8 legs?')
t3 = Tree('Is it food?')
mytree = Tree('Is it alive?', t2, t3)

c. What does the third parameter of a new Tree instance represent?

d. Write a line of code to add 'octopus' to the correct location in the Tree, where in the

sample code would you need to place it?

 __

3. On the left is sample code, on the right is its output when executed:

a. What would happen if we replaced the first line with:
print(mytree.right.value) ?

 __

b. Assuming we implemented the diagram from question 1, and mytree.value ==
'Is it alive?' what would the following line output?
print(mytree.right.right.left.value)

 __
c. How does Tree.left differ from what’s stored in Tree.right for our 20 Questions game?

 __

d. Why does print(mytree.left.right) output None?
 __

e. What might the following line refer to (according to the diagram)?:
mytree.right.right.right

 __

f. Write a method, isLeaf, that takes in a Tree as a parameter and determines if it is a
leaf.

__

__

__

__

4. Examine the following example code:

print(mytree.value) 'Is it alive?'
print(mytree.left.value) 'Does it have 8 legs?'
print(mytree.left.left.value) 'Is it an octopus?'
print(mytree.left.right) None

 def mystery(self):
 if not self.right:
 return self
 else:
 return self.right.mystery()

b. What does the following line do?: if not self.right

 __

c. For this recursive method, what is the base case / stopping condition?

 __

d. For this recursive method, how is the longer journey broken down/shortened?

 __

e. For 20 Questions, what will this mystery method return?

 __

Application Questions: Use the Python Interpreter to check your work

1. Write a recursive method of Tree that returns the left most leaf of any Tree. In our 20

Questions example, that would be the “Is it an octopus?” node.
def leftmost(self):

 __

__

2. Write the __str__(self) method for our Tree class so that it prints the values of all the child
nodes of any Tree, not only the Tree’s values (Hint: LinkedList.__str__ is similar):

def __str__(self):

3. Write a recursive method of Tree that returns True if the given value, v, exists as a value within an

unsorted Tree, False if not contained in the Tree.
def contains(self, v):

 __

__

